Search published articles


Showing 26 results for Friction Stir Welding

Payam Tayebi, Ali Fazli, Parviz Asadi, Mahdi Soltanpour,
Volume 18, Issue 3 (5-2018)
Abstract

In this paper, the single point incremental forming (SPIF) of friction stir welded (FSWed) 5083 aluminum alloy sheets are investigated experimentally and numerically. The aluminum sheets with 2mm thickness are friction stir welded with the same FSW parameters. In order to obtain the effect of FSW on the formability of SPIF, the base sheets and FSWed sheets are formed to conical shapes with different forming angles and then the limiting wall angles are determined for each condition. The experimental results indicate that the limiting forming angle of FSWed sheet is not so much different than the base sheet and FSW does not have a negative effect on the sheet metal formability in SPIF. To study the effect of SPIF and FSW in mechanical and microstructural properties of the formed parts, the effects of these process on the grain size and micro-hardness is investigated. Furthermore, the incremental forming is numerically simulated using the ABAQUS software and the sheet thickness distribution, obtained from the simulation, is compared with the experimental results. After verification of the numerical simulation model, the effect of FSW on the thickness distribution and strain distribution in SPIF is studied. The results indicate that in weld region and base metal region, the distributions of thickness and major strain are uniform while the distribution of minor strain is non-uniform.
Saeed Ahmadifard, Akbar Heidarpour, Shahab Kazemi,
Volume 18, Issue 3 (5-2018)
Abstract

In this study friction stir welding was used to perform butt joint of Al5083 and simultaneous production of Al-ZrO2 nanocomposite in weldment. Welding parameters such as rotational speed, travel speed and tilt angle were varied to obtain optimum weldment with no defect and high tensile strength, and then by adding zirconia nanoparticle to welding zone of optimum sample, the effects of pass number on microstructure, mechanical properties and wear characteristics of welded specimens were investigated. In order to investigate microstructure, optical and scanning electron microscope and atomic force microscope was used. Results showed that by increasing pass number, the distribution of nanoparticles in the matrix become more homogenous and grain size in the stir zone has considerably decreased. The reason of this phenomena could be attributed to the presence of reinforcement nanoparticles which it causes pinning the grain boundary, enhancing nucleation of new recrystallized grains and the effect on breaking of initial grains. The maximum microhardness and tensile strength of weldment were obtained for composite weldment after four pass of 111 Hv and 328.3 MPa, which these values were 24 and 26% higher than weldment without reinforcement. Wear resistance of the weldment was determined by pin on disk test and revealed that by increasing pass number of FSW, the wear resistance increased.
Ahmad Amin Zadeh, Amir Safari, Ali Parvizi,
Volume 18, Issue 8 (12-2018)
Abstract

Due to higher demands for tailor welded blanks (TWBs) applications in transportation industry, it is worthy to understand their forming characteristics in manufacturing processes, especially the deep drawing, in order to produce products with higher qualities. Due to differences between the base materials strength as well as existence of the welding zone, the formability of TWBs is frequently less than the base metals. Comparison of weld line movement and drawing depth in TWBs designed and produced by laser welding and friction stir welding are the aims of this study. Because of creation of limited heat affected zone area and suitable keyhole, laser welding is more appropriate for TWBs production comparing to the other welding processes. The parameters of the friction stir welding process are very important due to having high influence on complicated plastic zone variation, material flow pattern and temperature distribution in TWBs sheets. In this paper, having designed the experiments, the effect of blank holder force and linear welding velocity on drawing depth and weld line displacement of TWBs have been investigated. Moreover, the harnesses of the weld zone in both processes have been examined. Results show that by increasing the linear velocity of laser welding, the amount of weld line displacement and drawing depth will be increased. Furthermore, the higher linear velocity of friction stir welding will result into the higher weld line displacement and drawing depth. Likewise, the harnesses of the laser welding zone are higher than those ones for friction stir welding zone.
S. Yahya Abadi, M. Abbasi,
Volume 19, Issue 6 (6-2019)
Abstract

Al6061 alloy is widely used in the industry; so, its welding with reliable methods is of great importance. In the fusion welding of these alloys, imperfections such as cracks, cavities, and segregations of alloy element may occur that necessitates the application of solid state welding processes such as friction stir welding method. In spite of the many advantages of the friction stir welding, several attempts have been made to improve the properties of the resulting joints. In this study, the effect of increasing the cooling rate and the effect of vibration during the process on the microstructure and mechanical properties of Al6061 welds . Also, the simultaneous effect of water and vibration on the mechanical properties of the joints is evaluated The results showed that vibration due to increasing the strain  and water due to increasing the cooling rate reduced the size in the stir zone. Investigations revealed that cooling rate increment decreased the dissolution of Mg2 precipitates significantly. The results of the tensile test showed that the strength of the due to the grain refinement as was applied or when increased. Also, when the vibration and coolant were applied simultaneously, the strength increased dramatically due to significant grain refinement and presence of Mg2 precipitates. On the other hand, with grain refinement, the volume fraction of grain boundaries increases and, thus, the growth of the cracks decreases and correspondingly elongation enhances.

A. Aminzadeh, A. Safari, A. Parvizi,
Volume 19, Issue 9 (9-2019)
Abstract

Due to higher demands for tailor welded blanks (TWBs) applications in the transportation industry, it is important to understand their forming characteristics in manufacturing processes, especially the deep drawing, in order to produce products with higher qualities. Due to differences between the base materials strength as well as the existence of the welding zone, the formability of TWBs is frequently less than the base metals. The aim of this study is the comparison of weld line displacement and drawing depth in TWBs designed and produced by laser welding and friction stir welding. Laser welding is more appropriate for TWBs production comparing to the other welding processes because of the creation of limited heat affected zone and suitable keyhole. The parameters of the friction stir welding process are very important due to having a high influence on complicated plastic zone variation, the material flow pattern and temperature distribution in TWBs sheets. In this paper, by design experiments, the effect of blank holder force and linear welding velocity on drawing depth and weld line displacement of TWBs have been investigated. Moreover, the harnesses of the weld zone in both processes have been examined. Results show that by increasing the linear velocity of laser welding, the amount of weld line displacement and drawing depth will be increased. Furthermore, the higher linear velocity of friction stir welding will result in the higher weld line displacement and drawing depth. Likewise, the harnesses of the laser welding zone are higher than those ones for friction stir welding zone.

Ali Sonboli, Reza Beygi, Mohammad Hossein Alirezaie Majdabad Kohneh,
Volume 21, Issue 2 (1-2021)
Abstract

In this study, aluminum-to-copper welding was performed by friction stir welding (FSW) process and then the mechanical properties of the joints were evaluated and compared with the ones rolled to reductions of 30 and 60 percent. Tensile strengths (UTS) of the joints were 99 MPa, 143 MPa, and 132 MPa, for the initial weld, 30% rolling reduction, and 60% rolling reduction, respectively and in the non-rolled weld specimen, fracture occurred from the aluminum base material but in rolled welds, the fracture occurred precisely from the weld interface. Microstructural studies of the weld region and fracture surface of the specimens showed that the Al4Cu9 and Al3Cu intermetallic compounds, which are the most common intermetallic compounds in this type of dissimilar joining, formed in these areas. The presence of these compounds at the weld interface and propagation cracking during rolling has been one of the important factors in the failure of the weld interface in the rolled specimens. Results of the hardness test also confirmed the existence of these intermetallic compounds. By increasing the percentage of rolling reduction from 30% to 60%, the welding strength decreased due to the increase in the number of micro-cracks of the intermetallic compounds. Finally, it can be said that by choosing the optimal percentage reduction in the rolling process (30%), can be significantly increased (about 43%).  the ultimate tensile strength of dissimilar Al/Cu joints produced by friction stir welding (FSW).

Page 2 from 2