Search published articles
Showing 22 results for کوادروتور
A. Mohammadi , E. Abbasi , M. Ghayour , M. Danesh,
Volume 19, Issue 4 (4-2019)
Abstract
In this research, the objective is using 4 quadrotors in a group to carry out a certain weighted load. The load is connected by cables to each quadrotor. The equations of motion of the quadrotors are considered completely and without simplification. Unlike other researches, to express the relationship between the load and the quadrotors, the ropes are considered as springs, so they are pulled out and retracted during the mission. Formation control design and path tracking by the group is done by using feedback linearization control. Control protocol design is presented in two structure, centralized, and decentralized. Unlike other papers, in decentralized structure, there is no information communication between the agents to reduce the communication costs. The mission of the group is defined as the quadrotors first pick off the load from the ground and, then, track the desired path to reach the target point. When the load reaches the target point, the quadrotors should put the load on the ground and, then, land themselves. Cutting the cable of one of the quadrotors is applied to the system as a fault and in addition to providing a method to detect its occurrence, the performance of the centralized controller is checked in this situation.
Hadi Asharioun, Mohammad Jahanshahifar, Ehsan Davoudi, Mahmood Mazare,
Volume 23, Issue 7 (7-2023)
Abstract
In this paper, a finite-time fault tolerant controller based on sliding mode algorithm, as a robust control method, is presented to control the attitude stabilization of the quadrotor system in the presence of actuator fault and uncertainty. The controller is designed based on the nonlinear model of a quadrotor and its stability analysis is performed according to the Lyapunov stability theorem. Also, regarding some weaknesses of MEMS sensors such as partly high noise and bias error, an extended Kalman filter is designed and implemented in order to merge sensors data and reduce the noise effect on the outputs. To validate the controller performance, the experimental tests is implemented on a full-scale quadrotor in real-time. The evaluation of the designed strategy is carried out in different scenarios, no fault in the actuators and a partial loss of effectiveness of an actuator as well as uncertainty in the quadrotor parameters. The experimental results reveal the superiority of the sliding mode tolerant strategy over feedback linearization in the presence of various faults and uncertainty effects.