Search published articles


Showing 2 results for 304l Stainless Steel

D. Dindar, B. Jabbaripour,
Volume 20, Issue 4 (4-2020)
Abstract

Increasing workpiece surface quality and reducing tool wear are always the most important ones in machining purposes. There are basic challenges to achieve optimum conditions for workpiece surface and tool life in different machining operations of austenitic stainless steel 304L due to low thermal conductivity and creating high temperatures at the cutting zone. Applying conventional cooling methods such as flood techniques does not usually provide desirable control of machining temperature. Also, their use often creates environmental problems. Recently, the cryogenic cooling process has been considered by researchers to reduce these problems in various machining methods. In this research, turning of 304L stainless steel using cryogenic cooling of CO2 have been studied to investigate the effect of flow rate and fluid spraying method on workpiece surface roughness and tool wear. For this purpose, the tool-workpiece contact zone has been cooled in five different methods of CO2 fluid spraying according to the number and position of the spraying nozzles (Up1, Up2, Down, Up1-Down, Up2-Down) and three different flow rates (12, 18 and 24 l/min). The minimum main flank wear of the tool was achieved in the Up1 cooling method and 18 l/min flow rate and the minimum workpiece surface roughness was achieved in the Up1 cooling method and 12 l/min flow rate. Regarding economic considerations to reduce the consumption of spraying flow of CO2 fluid and achieving the minimum main flank wear of the tool, built-up edge and workpiece surface roughness, the optimum spraying method and flow rate were obtained as Up1 and 12 l/min, respectively.ش

Saeed Dinarvand, Behzad Jabbaripour,
Volume 23, Issue 11 (11-2023)
Abstract

In the current research, the effect of cutting depth and speed on surface topography, microhardness and microstructural changes in cross-sectional surface of turned parts under dry, wet, MQL and cryogenic cooling (CO2) conditions, on 304L stainless steel has been investigated. The main origin of surface topography defects was the formation of built up edge (BUE) on the cutting tool and its removal again. Also, the increase in cutting speed causes instability in the formation of BUE, as a result the volume of accumulated BUE decreases. Considering the improvement of surafce topography, in the order of priority, the efficiency of MQL, wet and cryogenic methods has been from the highest to the lowest compared to the dry method. the cross section of machined samples were prepared and it was observed that subsurface hardness of the samples decreases with the distance from the surface up to 34% and approaches the hardness of the bulk material. The hardness value in cross section of machined samples is directly related to the work hardening caused by severe plastic deformation on machined surface.With increase of cutting speed, the intensity of plastic deformation increases and the hardness under the surface increases. Different cooling and lubrication processes have a direct effect on thickness of the microstructural deformed layer. Under the highest value of cutting speed used in this research, the maximum reduction in thickness of the deformed layer of the microstructure in cryogenic and MQL conditions compared to the dry mode was equal to 62% and 28%, respectively

Page 1 from 1