Search published articles
Showing 2 results for Aisi4340
Ahmadreza Omiddodman, Hamed Hassanpour, Mohammad Hossein Sadeghi, Amir Rasti, Mohammad Hossein Saadatbakhsh,
Volume 14, Issue 13 (3-2015)
Abstract
AISI 4340 steel is a low alloy steel with high tensile strength that has numerous applications in industry. Machinability of this alloy steel has difficulties due to its low heat conduction and high heat concentration in cutting zone. Therefore, use of cutting fluids in machining of this steel is inevitable. On the other hand, environmental problems of using mineral lubricants lead industries into use of biodegradable oils such as Vegetable based cutting fluids. The aim of this study is to investigate the drilling of AISI4340 alloy steel in presence of semi-dry lubricant and using soybean vegetable-based oil. For this purpose, drilling parameters including feed rate and cutting speed at three levels and workpiece hardness at two levels were chosen. Totally 18 experiments were carried out using coated carbide drill. Results revealed that vegetable-based oil can effectively be used in drilling using a semi-dry lubrication method. In addition, feed rate was the most effective parameter on cutting force and surface roughness and by increasing it, the cutting force increased, and the surface quality deteriorated. Also, workpiece hardness showed significant effect on surface roughness.
Amir Rasti, Sina Sabbaghi Farshi, Mohammad Hossein Sadeghi, Hadi Imani,
Volume 17, Issue 1 (3-2017)
Abstract
In this research, microhardness variations of subsurface in hole making on a AISI4340 steel workpiece was studied experimentally. For this purpose, four hole making methods were used including; helical milling, profile milling, drilling with and without predrilling. The design of experiments utilized full factorial method in which two main cutting parameters including cutting speed (Vc) and feed rate (fz) were changed in three levels. Nine experiments were performed for each process and Hardness variations of substrate layer along the hole radial and axial distances were investigated (216 hardness measurements points). Results showed that the measured hardness in all of the experiments were higher than bulk material hardness, regardless of cutting conditions and the maximum hardness value was found in the upper levels of cutting parameters of traditional drilling method (729 Vickers). In addition, due to workpiece temperature and work hardening increasing with prolongation of the process time, the maximum hardness value was obtained on the exit surface of hole in all processes. Also, least microhardness variations was found when using traditional drilling with predrill which represents superiority of non-continues, multistage hole making processes and conventional drilling using predrill in creation of holes with more uniform properties.