Showing 6 results for Api X70
, , ,
Volume 13, Issue 4 (7-2013)
Abstract
The structural integrity of welded joints in natural gas transportation through large diameter steel pipes requires the experimental determination of material mechanical properties in seam weld via destructive and non-destructive testes. In this paper, the metallurgical and mechanical characteristics of multi-pass girth weld in seam weld, heat affected zone (HAZ), and base metal of a pipe with 56 inch outside diameter, 0.780 inch wall thickness is determined. To do this, chemical analysis, standard metallography, tensile and impact tests and hardness experiments were conducted. The metallographic results demonstrated that different sub-zones in welded joint had different microstructure. The existence of different chemical contents in different weld passes and the presence of hard phases (such as martensite due to uncontrolled heat cycles) had direct effects on mechanical properties of the seam weld and HAZ. From the hardness test result, it was found that HAZ and centerline of the seam weld had the minimum and maximum hardness levels, respectively. Furthermore, the minimum Charpy impact energy was found in the seam weld centerline.
Mostafa Nakhaei, Sayyed Hashemi,
Volume 13, Issue 14 (3-2014)
Abstract
In this research, the hot deformation behavior of API X70 steel was investigated by hot compression tests. A temperature range between 950 and 1150 °C was used for experiments with different strain rates of 0.01, 0.1 and 1 s-1. The work hardening rate versus stress curves were used to reveal if dynamic recrystallization (DRX) occurred. The application of constitutive equations to determine the hot working constants for the tested steel was discussed. Using regression analysis, the stress multiplier (α), the apparent stress exponent (n), and the activation energy (Qd) for DRX were calculated as 0.016 and 4.420, and 382 kJ/mol, respectively. Furthermore, the effect of Zener–Hollomon parameter (Z) on the characteristic points of flow curves was investigated using the obtained relations. The dynamic recrystallization (DRX) kinetics of API X70 steel was also studied and its governing equation was derived.
Mostafa Nakhaei, Sayyed Hojat Hashemi,
Volume 15, Issue 4 (6-2015)
Abstract
The API X70 steel is a high-strength low alloy steel which is used in construction of high-pressure long-distance gas and oil transportation pipelines with large-diameter. The pipe used in this study has 1422mm outside diameter and 19.8mm wall thickness, formed by spiral welding. As this steel is totally imported from abroad, the study of continues cooling transformation behavior and the optimum design of thermo-mechanical control processes are important for its domestic production. In this study, dilatometry examination was conducted on API X70 steel in a wide range of cooling rates from 0.5 to 40 °C/s. The optical microscopy observation and microhardness measurement were used to verify the observed microstructures. From the experimental results, the continuous cooling transformation curves (CCT) were constructed for API X70 pipeline steel. Different microstructures including granular bainite, pearlite, acicular ferrite and bainitic ferrite were observed depending on the cooling rate of tested samples. The observed dominant microstructure in 5 and 7.5 °C/s cooling rate was acicular ferrite which is the desired microstructure in energy transportation pipeline steels. These results can be used to design the optimum thermo-mechanical control process (through the selection of proper cooling rate) in domestic manufacturing of the API X70 steel.
H.r. Hajibagheri, A. Heidari, R. Amini,
Volume 19, Issue 1 (1-2019)
Abstract
Determining yield and tensile strengths is of utmost importance for engineers in identifying and examining the mechanical properties of pipelines. However, performing a tensile test requires sampling and is, therefore, time-consuming. Thus, it is essential to use an accessible and convenient parameter in order to investigate the relationship between yield and tensile strengths. Hardness can prove to be the parameter we are seeking. The present study used 10 gas transmission pipelines (grade X70, straight seam welded, outer diameter: 1422.2mm, and thickness: 15.9mm) in order to perform chemical analyses, impact tests (base metal, weld, HAZ), microstructural examinations, using an optical microscope, indentation hardness tests (base metal, weld, HAZ), and tensile tests. The minimum, maximum, mean, probability density function, and standard deviation of hardness, yield strength in base metal, and tensile strength in weld and base metal were obtained and compared with API 5L standard. The data were used to determine the relationship between strength and hardness. The results prove to be a reliable measure in order to estimate the strength of base metal in pipelines, which reduces the costs and the time needed in order to achieve an optimal strength.
M. Rajabi, S.h. Hashemi,
Volume 20, Issue 3 (2-2020)
Abstract
Welding residual stresses decrease designing stress in natural gas transmission pipes with large diameter under high internal pressure. The outside diameter and wall thickness of API X70 steel in this research are 1423 and 19.8 millimeter. Hole drilling is the most common technique in order to measure residual stresses. Because of large diameter of this pipe, its transportation to conduct hole drilling test is a big problem so cutting a finite sample is desired. In this study standard dimension of this sample plate is analyzed and simulation of welding process is done from which and residual stresses in different directions are obtained. Residual stresses in the thickness direction is presented for the first time. The results showed separating a finite sample with the size of 320×440 millimeter is appropriate to do hole drilling test. The location and amount of the maximum residual stress is evaluated and compared for both simulation and experimental samples. Variation in hoop and longitudinal residual stresses on both internal and external surfaces of pipe samples are investigated. Also validation of simulation results with the experimental results of the same pipe is perfomed. Maximum residual stress (460MPa) is measured on inner surface of the pipe (96 percent of yield stress) which is reduced to 200MPa (42 percent of yield stress) after hydrostatic test. Because residual stress after hydrostatic test is lower than half of yield stress, hole drilling technique is validated after hydrostatic test.
Hosein Samadieh Labbaf, Sayyed Hashemi,
Volume 22, Issue 11 (11-2022)
Abstract
The Charpy impact test is an experimental method for determination of materials dynamic properties at different temperatures to investigate the ductile to brittle transition behavior of tested materials. The percentages of ductile and brittle fractures can be evaluated based on fracture area of Charpy specimen (according to API E23 standard) by visual techniques which do not provide exact percentages of these fractures. In this study, a method is proposed to calculate the exact percentage of ductile fractures using image processing, which makes it possible to quantitatively examine different parts of the fracture surface with high accuracy. All steps of image processing are described for eleven Charpy standard specimens of API X70 steel, tested at temperatures between +20 to -80 °C with a temperature increment of 10 °C. In this research, converting a qualitative image of fracture surface to a quantitative matrix is described for the first time. Prediction of the shape of ductile and brittle parts of the fracture surface at temperatures between +20 and -80 °C is one of the results of this study. The percentages of ductile fractures using image processing for temperatures of +20, 0, -20, -40, -40, -60 and -80 °C were obtained as 100, 100, 86, 53, 36 and 0, respectively. The transition temperature was -45 °C for this steel, corresponding of 50% ductile fracture.