Search published articles


Showing 3 results for Avr

Rohollah Talebitooti, Ali Akbar Torbaty,
Volume 13, Issue 14 (3-2014)
Abstract

In this paper, viscoelastic insulators are employed into an automotive brake system to improve the vibration stability. Thus, the system stability has been considered with hypothesis of couple modes. Therefore, the originality of the paper includes the complex eigenvalue analysis of viscoelastic model in brake squeal phenomenon. Accordingly, the brake system is simulated in a FEM code and then, the viscoelastic materials are applied using Negami-Havriliak model. Comparing the eigenvalue results in both cases, in which the viscoelastic material is treated as an absorber at the first case and without treatment for another case, indicates an improvement in instability mode at 12 kHz. In addition, applying these absorbers has no significant effects in low frequency. Furthermore, comparison of the results presented here with experimental ones done by other author, indicates the reliability of the presented model. Finally, with applying the strain energy analysis, the location of absorber treatment as well as its optimum thickness is concluded.
A.m. Rashidi, H. Ramazani,
Volume 19, Issue 11 (11-2019)
Abstract

In this research, the effects of partially austenitising time on the machinability of spheroidal graphite (SG) cast iron with ferrite-martensite dual matrix structure (DMS) were investigated to optimize its machinability. Specimens with non-alloy ferrite matrix structure were prepared by the casting process. Then the specimens were austenitized at temperatures of 900 oC at various times (5 to 25 min) and subsequently quenched into the water to produce DMS with martensite volume fractions. The Brinell hardness test method was used to determine the hardness of specimens. The machinability of the workpieces with ferrite and dual structures were investigated by measuring the surface roughness and primary cutting force. According to the results, the Johnson-Avram kinetic model was valid for correlation between the martensite volume fraction and autenitising time. The surface roughness was increased and the cutting force was decreased with increasing austentising time to 12 min, and consequently, with increase the hardness to 168 BHN. The heating at 900 oC for 12 min resulted in 16-20% and 15-23% improvement on the cutting force and specific cutting power, respectively, when compared to as-cast specimen, while the surface quality remained at the same level. The cutting force was correlated with feed rate as a power model with exponents of 0.77 and 0.73 for DMS (with 30% martensite) and ferritic as-cast samples, respectively.

Ehsan Tahvilian, Milad Iranpour, Ali Loghmani,
Volume 22, Issue 9 (9-2022)
Abstract

Low-cost and highly effective noise reduction has recently become one of the substantial challenges for industrial manufacturers. This paper presents the design and construction of a cost-effective system for attenuating single-frequency annoying noise generated from industrial products and machines. To achieve this goal, narrowband active noise control using Filtered-x Least Mean Square (FxLMS) method has been used with the help of a two-factor digital adaptive filter, called the adaptive notch filter. Therefore, a duct structure has been designed and experimental tests have been performed on it. To reduce implementation costs, the Arduino Uno board, which has an AVR microcontroller (ATmega328P), has been used as the controller. About 15dB noise attenuation at 400Hz and 750Hz frequencies and about 30dB noise attenuation at 650Hz and 950Hz frequencies have been achieved. Then, active noise control for two separate and simultaneous frequencies has been performed, which had somewhat effective results, and in one of these frequencies, noise attenuation of about 18dB has been observed.


Page 1 from 1