Search published articles
Showing 2 results for Asymmetric Rolling
Fatemeh Yaghoobi, Roohollah Jamaati, Hamed Jamshidi Aval,
Volume 20, Issue 11 (11-2020)
Abstract
In the present study, using a new method, dual-phase (DP) steel with high strength and good ductility was produced from plain carbon steel with 0.16% carbon. The DP steel with ferrite-martensite structure was obtained using austenitizing, quenching, asymmetric cold rolling, and intercritical annealing at temperatures of 770 and 800 °C and short holding times of 1 and 5 min. Due to the application of uniform shear strain through asymmetric cold rolling, a uniform distribution of the martensite phase was observed in the RD-TD and RD-ND planes. By increasing the holding time, the volume fraction of martensite increased from 8% to 12% at 770 °C and from 10% to 33% at 800 °C for the holding times of 1 and 5 min, respectively. Hardness and strength improved with increasing temperature and time of intercritical annealing. The sample produced at a temperature of 800 °C and a time of 5 minutes showed excellent mechanical properties such as 244 HV hardness and 1020 MPa strength and 12.5% ductility. In addition, due to the high volume fraction of martensite and the consequent reduction of its carbon content, the hardness of this phase decreased and as a result, it showed significant plastic deformation and high strain hardening. The fracture surface of all produced DP steels mainly included dimples, which indicates ductile fracture behavior.
Amir Kazemi-Navaee, Roohollah Jamaati, Hamed Jamshidi Aval,
Volume 22, Issue 11 (11-2022)
Abstract
In the current research, the effect of strain path by two processes of conventional asymmetric rolling and asymmetric cross rolling, as well as natural aging on the microstructure and hardness of AA7075 aluminum alloy was investigated. The microstructure was examined by light microscopy and the hardness by macro-Vickers hardness tester. The results showed that the rolled sample (initial sample) had elongated grains due to rolling and the average width of the grains in this sample was 13.4 μm. By applying conventional asymmetric rolling up to 60%, the grains became more elongated and the average grain width reached 2.6 μm. By performing asymmetric cross rolling up to 40%, the average grain width reached 3.7 μm. The distribution of particles did not change significantly with rolling deformation. Shear bands were also formed in the sample after 40% and 60% conventional asymmetric rolling, as well as after 40% asymmetric cross rolling. At zero aging time, the hardness of the 60% conventionally rolled sample was higher than the 40% cross rolled sample. With increasing the aging time, the hardness of all samples increased due to natural aging. As the thickness reduction percentage increased (increasing the strain), the hardness increase percentage due to natural aging decreased. The increase in hardness due to natural aging was more noticeable in the cross-rolling process than in the conventional rolling process. After 7 days of natural aging, the hardness of the material reached its saturation limit.