Search published articles


Showing 4 results for Ballistic Behavior

Mohammad Pol, , ,
Volume 12, Issue 1 (4-2012)
Abstract

In this paper, the influence of nanoclay Closite 30B on ballistic impact behavior of 2D woven E- Glass/Epoxy laminated composite has been investigated experimentally. The glass/epoxy/nanoclay laminate nanocomposites have 12 layers and 60% fiber volume fraction is manufactured by VRTM method. Fibers have a plain weave configuration with density of 200gr/m2, while The epoxy resin system is made of a diglycidyl ether of bisphenol A (DGEBA), Epon 828, as the epoxy prepolymer and a polyoxypropylene diamine with average molecular weight of 400 gr/mol, Jeffamine D-400, as the curing agent. The nanoclay Closite 30B is dispersed into the epoxy system in a 0%, 1%, 2%, 3%, 5% and 7% ratio in weight with respect to the matrix. Morphological studies using XRD revealed that nanostructures are mostly in intercalated form rather than exfoliated form. In additional to tensile test, ballistic impact test is carried out on the samples by flat-ended projectile with 14gr mass and 9.77mm diameter in 130m/s, 142m/s and 155m/s velocities. The results have shown that not only the mechanical properties, but also ballistic impact resistance can be improved with adding nanoclay.
Mohammad Pol, , ,
Volume 13, Issue 4 (7-2013)
Abstract

In this paper, the influence of nanoclay Closite 30B on ballistic impact behavior of 2D woven E- Glass/Epoxy laminated composite has been investigated experimentally. The glass/epoxy/nanoclay hybrid laminate nanocomposites are manufactured by layup method under pressure. The nanoclay particles are Closite 30B and are dispersed into the epoxy system in a 0%, 3%, 5%, 7% and 7% ratio in weight with respect to the matrix. In additional to tensile test, ballistic impact test is carried out on the samples by flat-ended projectile with 8.9gr mass and 10mm diameter in 134m/s and 169m/s velocities. The results have shown that not only the mechanical properties, but also ballistic impact resistance can be improved with adding nanoclay.
Mohammad Pol, ,
Volume 13, Issue 6 (9-2013)
Abstract

In this paper, the influence of nanoclay Closite 30B on ballistic impact behavior of 2D woven E- Glass/Epoxy laminated composite has been investigated Theoretical and experimentally. The structure of the hybrid nanocomposite is glass/epoxy/nanoclay laminate and is manufactured by hand layup method under pressure. The nanoclay is dispersed into the epoxy system in a 0%, 3%, 5%, 7% and 7% ratio in weight with respect to the matrix. Comparison of theoretical results and results of the ballistic impact test are shown a good correlation. The results have shown that optimal to increase in energy absorption is 10% in 3% nanoclay content. Howevere, in the impact velocities far than ballistic impact, maximum increasing in energy absorption is 20% in 10% nanoclay content.
Ehsan Zamani, Reza Mohammadi Pour, Mohammad Hossein Pol,
Volume 17, Issue 6 (8-2017)
Abstract

In this paper, a 2D analytical model is introduced for predicting the ballistic behavior of the thin laminated composite plate based on tsai-hill and maximum strain criterions. At first, try to determine the moment deformation along with the expansion of transverse wave from impact point and the nonlinear strains and stresses in the composite plate. Then, the energy absorbed due to failure modes and deflection of composite plate such as elastic deformation energy, longitudinal and lateral fracture energy, kinetic energy of local movement, delamination and matrix cracking energy is calculated. For investigation of the various failed layers is used of tsai-hill and maximum strain criterions. In addition to the effects of strain rate on the mechanical properties of the composite layers is applied momentarily during Penetration process. Finally, the present analytical model based on tsai-hill and maximum strain criterions is compared with experimental results. The maximum strain criterion respect to tsai-hill criterion has shown a good agreement with experimental results in the calculation of ballistic limit velocity. According to the obtained results the share of fracture energy compared to the elastic deformation energy by increasing the thickness becomes more and more. And also, the kinetic energy of the local movement, delamination and matrix cracking energy have lower share in the process of energy absorption.

Page 1 from 1