Search published articles


Showing 2 results for Bees Algorithm

, , ,
Volume 12, Issue 5 (1-2013)
Abstract

This study explores application of a bees algorithm (BA) for economic optimal design of plate-fin heat exchangers. Therefore in this study, the optimization is targeting two single-objective functions separately. The first is the minimum heat transfer area which is mainly associated with the capital cost of the heat exchanger and the other is minimum total pressure drop that represents the operating cost for specific heat duty requirement under given space restrictions. Based on applications, heat exchanger length, fin frequency, numbers of fin layers, lance length of fin, fin height and fin thickness of the heat exchanger are considered for optimization. The constraints are handled by penalty function method. Also, the effectiveness and accuracy ofthe proposed algorithm is demonstrated through a case study. Comparing the results with the corresponding results using genetic algorithm (GA)and particle swarm optimization (PSO) algorithm reveals that the bees algorithm can converge to optimum solution with higher accuracy
Erfan Mirshekari, Afshin Ghanbarzadeh, Kourosh Heidari Shirazi,
Volume 16, Issue 8 (10-2016)
Abstract

In this study, the effects of geometrical parameters of 6-DOF Hexa parallel robot on kinematic, and dynamic performance indices are investigated and its structure is optimized using the intelligent multi-objective Bees Algorithm. In this way, after describing the structure and specifying the geometrical parameters of the robot, inverse kinematic relations of the robot are obtained. Jacobian matrix that maps velocity from joint space to Cartesian space is developed. Mass matrix is obtained from calculating the total kinetic energy of the manipulator in terms of the actuated joints vector. Inverse of the homogen jacobian based condition number is considered as a index to evaluate the kinematic dexterity. based on mass matrix as relation between acceleration vector of the end effecter and torque vector of actuated joints, dynamic dexterity index is presented. Using the multi-objective Bees Algorithm and considering dynamic and kinematic performance indices in a pre-determined workspace as the objective functions, structure of Hexa parallel robot is optimized. In this way, the proper geometrical constraints such as limitation of universal and spherical joins, and the constraints to singularity avoidance are considered. Pareto front of the multi objective optimization of the robot is drawn. Diagrams of the kinematic and dynamic performance indices variation in the workspace and the effects of geometrical parameters variation on them are presented.

Page 1 from 1