Search published articles


Showing 2 results for Bending Loading

Hossein Malekinejad Bahabadi, Gholam Hossein Rahimi, Amin Farrokhabadi,
Volume 16, Issue 6 (8-2016)
Abstract

Sandwich structures are consisted of two thin skins with high mechanical properties and a thick core with lower mechanical properties and weight. Due to high strength/ stiffness to weight ratio, these structures are used extensively in engineering structures such as aerospace structures, ship hulls, turbines blades, etc. Skin/core debonding is one of the major failure modes in these structures. In this paper, debonding resistance of sandwich panels with composite skins and a core consisted of PVC foam and a corrugated composite laminate is investigated both experimentally and numerically. Square geometry is considered for corrugated composite laminate and obtained results are compared with reference specimen with simple core made of PVC foam. The three point bend test with attached ENS fixture is used to perform the standard experimental test. The results have shown that in square specimen with 3 and 6 layer skin before the separation between skin/core, the specimens are failed from the middle of the upper skin, but for 8 layer skin, the skin/core debonding are accured before other modes of failure. The maximum skin/core debonding resistance for square specimen are increased 269.26 percent. Specimens are modeled in Abaqus and results show a reasonable agreement between experimental and numerical result.
S.j. Zakavi, H. Mohammadi Asl, D. Babaee,
Volume 19, Issue 9 (9-2019)
Abstract

In this paper, finite element analysis with combined (nonlinear isotropic/AF kinematic hardening model) and chaboche hardening models are employed to investigate ratcheting behavior in stainless steel branch pipes under dynamic moments and internal pressure. Obtained results show that the maximum value of ratcheting strain takes place in the junction of branch pipes in the hoop stress direction. In this case, the rate of progressive strains increases with the increase of the bending moment levels in constant internal pressure. Furthermore, this study reveals that the geometry and dimensions of branch pipes have a significant impact on the rate of progressive strains. The bending moment levels to initiate strain accumulation phenomena will be increased with the increase of the dimensions of branch pipes. In the BSS1 sample, comparison between results obtained using progressive strains with combined and chaboche hardening models are much better than those of Armstrong-Fredrick hardening model and are near to the experimental data. Of course, in BSS2 sample, the behavior of ratcheting with combined hardening model is near the experimental results. For the BSS3 sample, the prediction of ratcheting with the chaboche hardening model is better than using the other strain hardening models and are near to the experimental data. Like the carbon steel samples studied in the recent paper, compared to the Armstrong-Frederick hardening model, the chaboche and combined hardening models exhibit an appropriate prediction and similar to experimental results in stainless steel samples.
 



Page 1 from 1