Search published articles


Showing 2 results for Combined Heating and Power

Mahmood Chahartaghi, Mohammad Sheykhi,
Volume 17, Issue 10 (1-2018)
Abstract

In this paper the modeling of combined heat and power (CHP) system driven by Stirling engine has been discussed. The system consists of one beta type Stirling engine as the prime mover, heat recovery system, power generator and the auxiliary boiler. The analysis of the Stirling engine is a non-ideal adiabatic analysis. To increase the accuracy of modeling, the frictional and thermal losses of Stirling engine are considered in comparison of other previous studies and the non-ideal adiabatic analysis is performed using a developed numerical code in MATLAB software. For model validation, the operational and geometrical specification of the GPU-3 Stirling engine was used and the results were compared with experimental results and other previous models. Then, one beta-type Stirling engine was proposed as prime mover in cogeneration system for building applications. The use of the cogeneration systems in building applications becomes more common, which system from the perspective of the fuel consumption and pollution emission, have a significant advantage in comparison with the other conventional systems. For this purpose, the effects of engine frequency, regenerator length, and heat source temperature on fuel consumption and pollution emission of system were examined and proper engine design parameters were selected. Finally, the electric power and thermal power were achieved 11263 W and 21653 W, respectively, with reduction in fuel consumption and pollution emission of 37% and 42%, respectively.
Alireza Etemad, Ashkan Abdalisousan, Mahdi Aliehyaei,
Volume 22, Issue 2 (1-2022)
Abstract

A significant portion of world energy consumption belongs to building sector, And HVAC systems have an important share in building energy usage. In this research, a novel HVAC system has been proposed which is based on three technologies of combined heating and power, ice thermal energy storage, and solar heating. The system is named CCHP-ITESS as an abbreviation of previously mentioned technologies. This system was modeled on a case study building in Tehran, to obtain energy consumption, costs, and payback results in comparison with conventional HVAC systems. In order to realize the effect of energy prices on the economical results, the same system and building were simulated for the city of Los Angeles,California,US. The results showed that both scenarios will lead to significant reduction in net source energy consumption, which is 36.87% reduction in Tehran and 40.28% reduction in Los Angeles. However, the system is not economically reasonable in Tehran because of the low energy prices and has a 39 years of payback period, but is absolutely feasible in Los Angeles with ab payback period of less than 3.5 years. As a result, application of this system is feasible in Los Angeles and not feasible in Tehran.

Page 1 from 1