Search published articles


Showing 384 results for Composite


Volume 0, Issue 0 (1-2024)
Abstract

The Ministry of Agriculture Jihad in Iran implemented contract farming (CF) for wheat in 2021 to address marketing issues. This study compares agricultural sustainability for farmers participating in and not participating in CF. Agricultural sustainability was assessed by applying a combined index approach that considers economic, social, and environmental dimensions. The required data came from 620 wheat farmers in Golestan province, sampled using the multi-stage randomization technique. The data were evaluated using exploratory factor analysis (EFA) and clustering methods. The findings indicated a significant difference in the performance of economic and environmental sustainability dimensions between two groups of wheat farmers. For the participants, 14.2% were deemed unsustainable, 47.7% were considered partially sustainable, and 38.1% were classified as sustainable. For non-participants, the figures were 38.7%, 47.7%, and 13.5%, respectively. Therefore, it is suggested to provide more opportunities for participation in this program and expand it to other key crops. Additionally, authorities should provide more information about the benefits of the CF plan.

Volume 0, Issue 0 (8-2024)
Abstract

So far, the performance of masonry walls against in-plane lateral loads such as earthquake loads has been extensively studied, but less attention has been paid to out-of-plane loads such as explosions. Due to their large surface area, walls endure significant forces during explosions, leading to extensive damage and potentially causing severe financial losses and casualties. Given the increase in terrorist and sabotage attacks, reinforcing these structures seems necessary. In recent years, fiber-reinforced polymers (FRP) have been widely and effectively used in the reinforcement and performance improvement of these structures. Their light weight, high stiffness and high strength, and corrosion resistance are among the properties that have attracted researchers to use these materials. Finite element modeling not only provides a basis for better understanding the behavior of masonry walls but also is very useful in predicting the behavior of these members after reinforcement, especially in the absence of experimental results. In this study, using numerical modeling in ABAQUS software, the behavior of masonry walls reinforced with FRP strips against a blast with an explosive charge equivalent to 150 kg of TNT (the weight of explosive likely to be carried in a sabotage attempt via a vehicle) at a distance of 5 meters was investigated. Lagrangian equations were used to model the mechanical behavior of the structure, and the solver used in this research is an explicit solver to account for the time factor in the software’s integration process. The total time considered for the entire explosion process is 1 second, and the explosive load was applied to the studied structure using the Conwep method. The type of fibers, width, thickness, area, and angle of the FRP strips were important and influential parameters that were examined for the efficiency of this reinforcement method. The modeling results indicate that this reinforcement technique is highly effective in strengthening masonry walls against explosions, as it has reduced the deflection of the wall by at least 70% and its energy by up to 90%. It can also be inferred that an arrangement for reinforcing masonry walls with FRP strips is suitable if it covers the areas prone to damage, which in masonry walls are the mortar joints between the bricks. Therefore, the horizontal arrangement shows better performance compared to the vertical and diagonal arrangements. Similarly, reinforcing 100% of the wall area performs much better than reinforcing 50% and 25% of the wall area, but it is not economically acceptable. In general, similar to structural elements, non-structural elements can also exhibit plastic behavior in critical situations, preventing the collapse of these elements due to the absorbed energy. Therefore, walls with higher plastic energy show better behavior against explosive loads. Additionally, based on the hysterical displacement and kinetic energy diagrams of the wall, it can be seen that the behavior of reinforced walls is oscillatory, while the behavior of unreinforced walls is noticeably pulsating. Finally, the optimal arrangement of FRP strips proposed for reinforcing masonry walls against explosions in this study is the use of CFRP strips horizontally, with a thickness of 1 mm, a width of 24 cm, and covering 50% of the surface area; This configuration successfully decreased the deflection of the wall from 63.1 cm to 7.7 cm and damped approximately 13% of the blast wave energy.
ript src="chrome-extension://lopnbnfpjmgpbppclhclehhgafnifija/aiscripts/script-main.js">

Volume 1, Issue 1 (12-2017)
Abstract

In this research,nanocomposite coatings based on epoxy containing pristine graphene oxide and starch-modified graphene oxide are prepared and characterized by Fourier transfer infrared spectroscopy, andtheir crosslinking behavior is studied using nonisothermal differential scanning calorimetry.These nanocomposites, because of having platelet-like nanomaterials inside and their organic origin, can be applied as coating on metal surface in diverse industries.The reason behind using starch was its natural basis and abundance of hydroxyl groups in its structure which can take part in crosslinking reaction with epoxide. Neat epoxy systems having amine curing agent, and nanocomposites containing epoxy, amine curing agent, andpristine or starch-modified graphene oxide nanosheets were cure at different heating rates to assess their curing behavior. Change in hearing rate of test caused change in onset and peak temperature of the exotherm curves and consequently heat of reaction changed. It was observed that the presence of the graphene oxide nanosheets hindered the crosslinking reactions, while surface modification of them with starch natural polymer compensated for such a hindrance via catalytic role of starch, and increased crosslink density of system. 

Volume 1, Issue 1 (12-2017)
Abstract

Oil resistant o-rings on the basis of acrylonitrile butadiene rubber (NBR) reinforced by nanoclay were produced via a traditional industrial method in accordance with aviation standard, AMS 7272. The production of nanocomposites comprised the compounding of nanocomposite with optimum mechanical properties and minimum contents of used carbon black and nanoclay, design and manufacturing of the required mold and finally compression molding of the oring. Mechanical and morphological properties of NBR/nanoclay compounds were optimized by introduction of proper contents of a compatibilizer containing a mixture of resorcinol and hexamethylene tetramine through using a master batch production method. The prepared nanocomposites were characterized using X-ray diffraction (XRD) analysis, curing measurements and tensile test analysis. The XRD analysis showed that the compatibilizer facilitates the intercalation of nanoclay silicate layers with the rubber chains which leads to the increase of their basal spacing. The cure characteristics of the nanocomposites showed a decrease of scorch time and increase the cure rate index with the nanoclay loadings. Furthermore, the minimum scorch time and maximum cure rate index could be achieved through using the appropriate content of compatibilizer. The results exhibit that the nanocomposites containing the compatibilizer have higher mechanical properties especially at higher deformations compared to the corresponding uncompatibilized nanocomposites

Volume 1, Issue 1 (3-2023)
Abstract

The overarching goal of this research is to use polymeric composites enriched with diatomic soil to improve petroleum-contaminated clayey soil. The effect of petroleum on the geotechnical properties of clayey soil was investigated in the laboratory in the first stage using uniaxial, direct shear, and permeability tests. The polymeric composite material was then created and mixed with the diatomic soil. The geotechnical properties of petroleum-contaminated clayey soil were studied using a polymeric composite material mixed with diatomic soil (PCD). Petroleum reduced the shear resistance, internal friction angle, and uniaxial resistance of the clay for contamination percentages ranging from 0% to 12%. Whereas 12 percent petroleum content causes the greatest changes in soil mechanical resistance. According to the results of the direct shear test, adding 5.5 percent PCD increases the shear resistance of the base material and contaminated base material to average values of 32 and 48 percent, respectively. Furthermore, the results of the petroleum permeability test show that adding 5.5 percent PCD reduces soil permeability. The results show that the improved clay by PCD can be used as a liner for the base of petroleum reservoirs.

Volume 1, Issue 2 (3-2018)
Abstract

Presence of filler in the polymeric materials changes the mechanical, dynamic-mechanical, rheological properties and even the swelling behavior of rubber composite due to mechanisms such as hydrodynamics, polymer-filler and filler-filler interactions. Swelling in rubber composites directly affects the polymer chains, also can affect indirectly other structures in composites such as the filler network and reduce mechanical properties suddenly. In this study, the nitrile rubber-nanosilica composite containing different concentrations of modified nanosilica was prepared and the composite structure was studied through rheological, mechanical, dynamic-mechanical tests. Also it was found that the filler network containing over percolation threshold 13phr of filler concentration has a significant contribution to the mechanical properties of composites. To determine the swelling effect on the prepared composite structure, with different degrees of solubility were used. The mechanical properties of the samples were measured in equilibrium swelling state for each of the solvents The decrement of the mechanical properties between the dry samples and swelled ones containing 14.4, 20 and phr 6.25 silica in solvent with 15% toluene is significant. These intensive changes in mechanical properties that happen at the low degree of swelling are attributed to the removal of the filler network. Therefore, controlling the swelling of rubber parts in adjacent to the solvent, plays the fundamental role in their performance.

Volume 2, Issue 4 (3-2019)
Abstract

The control of bacterial diseases of fish has always been one of the most important problems of aquaculteriets in recent years. One of these problems is bacterial resistance. Using antibiotics can cause problems for consumers. Therefore, the use of new antimicrobial agents with minimal complications is common. In the present study, using the acid-thermal method, the bentonite structure was modified and the chitosan and bentonite hybrids were modified in the stage of development. The structure of the compounds was studied using the Infrared Fourier Transform Spectrometry (FTIR), Surface Electron Scanning Microscopy (FE-SEM) and X-ray diffraction spectroscopy (EDX). Antimicrobial activity of two types of modified bentonite on gram negative bacterium Aeromonas hydrophila was studied in vitro using two methods of disk diffusion and microdilution. The results of the disc diffusion method showed that the antimicrobial compounds produced had antibacterial properties in experimental conditions against the Aeromonas hydrophilia bacteria. Antimicrobial activity (MIC and MBC) was determined using microdilution and clonal counting in Agar culture medium. The results showed that the modified compound with the acidic method had MBC of 28.57 and 14.28 mg / L for Aeromonas hydrophila bacteria in 10 minutes and 30 minutes. For chitosan and modified bentonite composite, MBC was 14.28 mg / ml for Aeromonas hydrophila bacteria in 10 and 30 minutes. The results of this study showed that modified bentonite and composite compounds have strong antimicrobial effects and can remove pathogens in laboratory conditions and can be used as new compounds to control pathogens in breeding systems.

 

Volume 3, Issue 1 (4-2013)
Abstract

The issue of earthquake and its destructive effects is constantly confronting human being communities as an extensive challenge. The ground, upon which we are constructing our buildings, is anything but solid. Hundreds of millions of years ago the continents were joined, but now they are dispersing ever so slowly. The idea that buildings are founded on stationary ground is only an illusion. From the viewpoint of geological time, the earth’s crust is in a continuous dynamic change. The scientific understanding of this process, known as continental drift or tectonic plate movement, which is the basic cause of most earthquakes, dates back only 100 years. Quakes strike at the heart of a community. When they damage buildings, people and animals are injured and killed. Earthquakes destroy the basic necessities of life, demolishing shelter, ruining food and water supplies and disrupting people’s livelihoods. Conversely, buildings that perform well during an earthquake, limit its impact on people and their basic needs. Scientists and building construction experts have strived in order to find the solutions for reducing structures damages which are caused by trembling of the earth and diminishing the casualty rate and also detriments, from some years ago. In our country, Iran, which is located in earthquake zone and has experienced some demolishing quakes before, this matter is more significant and remarkable. Apart from the poorest of communities for whom even partial earthquake protection is unaffordable, most of the disastrous effects of earthquakes are avoidable. Earthquake-resistant construction greatly reduces the rate of victims from a damaging quake, as well as lessening economic losses and disruption to public activities. Seismic retrofitting of existing buildings is of vital and crucial issues of our society. The purpose of rehabilitating is to reduce the vulnerability of a building’s inhabitants and the building itself, its structure, non-structural elements and possibly its contents to earthquake damage. To retrofit a building is to improve its seismic performance. One of the appropriate alternatives for enhancing the structural performance of available buildings is employing composites. These materials can be applied in order to increase the confinement, shear strength and ductility of columns and also enhance in-plane shear wall strength as well as out-of-plane resistance. In addition, with taking advantage of this kind of material, the secondary weight which would be added to the primarily structure is going to be significantly reduced and this would act as an optimum approach for rehabilitating the existing buildings. In this research, firstly the exact definition of composite materials and its components and different kinds are studied. Then, the essence of earthquake and seismic forces in addition to some topics on seismic retrofitting and the essential needs for it are discussed. Eventually, concerning the abilities of composites, employing them as a suitable technique for reconciliation of structural elements of existing buildings, which is one approach of seismic retrofitting, will be proposed with hope for presenting the essential knowledge of appropriate seismic retrofitting with efficient materials to architects and civil engineers in order to diminish the ruins of earthquake effects on structures and as a result, providing the next generations of our country with safer and much more protected circumstances.

Volume 3, Issue 2 (9-2019)
Abstract

is one of the most common improved oil recovery method in the world. High residual oil saturation at the end of this method is due to low macroscopic sweep efficiency and viscous fingering. It can be improved by the mobility control during polymer solution injection. In this study, by of silica/ the effect of it on IFT, viscosity, and was investigated. In addition, the performance of in high salinity water was studied by using nano particles. The zeta potential results show that the stability of polymer solution was enhanced in of nano particles in high salinity water condition. Also, the lowest IFT was obtained for contained 1 percent nano silica (18.34 ), and the most tendency to water wet conditions was provided for this concentration. In addition to, 1 percent nano silica/ has the best performance on formation water viscosity and improved the mobility ratio to 1.07, which it can increase the oil recovery.

Volume 3, Issue 3 (12-2019)
Abstract

Research Subject: Poor mechanical strengths and lack of thermal stabilities of hydrogels confine their extensive practical applications in many areas. The growing scientific need for solving this problem and achievement to the hydrogels with improved properties has led to the design and production of the nanocomposite hydrogels.
Research Approach: The polymeric networks of nanocomposite hydrogels compared to the ordinary hydrogels have improved elasticity and rheological properties. Other points that increase the importance of structural studies of nanocomposite hydrogels are the high strength of these materials versus the application of external forces, as well as maintaining its structure against increasing of temperatures. In this regard, the type and amounts of nanomaterial, the preparation method and formation of hydrogel network have a significant role in improving the physical, chemical and biological properties of hydrogels, and, it must be noted that these parameters will depend on the application of nanocomposite hydrogels. This also highlights the need for the production of nanocomposite tailored hydrogels. Therefore, orientation of the range of nanomaterials, the preparation method and product identification, along with sufficient information on the application of these materials, might have an important role in ensuring the success of these materials, requiring comprehensive library research and studies on polymerization processes, morphology and rheology.
Main Results: In this review article, the scientific advances in the field of nanocomposite hydrogels, focusing on its types based on the type of nanoparticles, its properties, preparation methods, identification methods with a new perspective on rheology, thermal analysis and morphology is investigated. Finally, the applicability of these materials is collected in a comprehensive table in various fields such as tissue engineering, enhanced oil recovery, agriculture, and etc…

Volume 3, Issue 4 (3-2020)
Abstract

Research subject: In recent years, there are so many attractions in the field of effective detection and discrimination of volatile organic compounds (VOCs). Detection of VOCs compounds, are very important in many applications and industries such as air pollution control, air quality control, food packaging, food quality control, disease diagnostic, agriculture etc. The sensitivity and selectivity of the prepared sensors to detect of VOCs needs to improve.   
 Research approach: A conductive polymer composite sensitive layer based on poly (lactic acid) as polymer matrix and multiwall carbon nanotubes as conductive filler was prepared to detect of volatile organic compounds (VOCs). For this purpose the porous sensitive layer was prepared by non-solvent induced phase separation (NIPS) method. In this structure, chloroform (low boiling point temperature) was used as the solvent and ethanol (high boiling point temperature) was used as a non-solvent. The sensitive layer was used to detect of toluene, methanol, and chloroform. The structure and morphology of synthesized layer was investigated by means of scanning electron microscopy (SEM) and BET test.
Main results: The investigation indicated that the phase separation method induced the open cell morphology into the conductive composite. The BET results showed that the specific surface area of composite increased to 22.3 m2/gr. The experimental results showed that the response properties of porous layers was improved dramatically in comparison with dense layers. It was related to the increase of specific surface area of polymer composite and therefore the increase of diffusion coefficient of analyte molecules into the polymer matrix. Finally the sensitivity and selectivity of porous sensitive layers was investigated based on Flory-Huggins interaction parameter.
 

Volume 4, Issue 1 (6-2020)
Abstract

Abstract
Research subject: Nanocomposites are a new class of materials that have at least one of their major constituents, at least in one dimension, in the range of one to one hundred nanometers. Typically, nanocomposites have different and superior properties in terms of mechanical and physical properties than conventional composites.
Research approach: In this study, polyvinyl acetate was prepared by emulsion polymerization for polymer matrix. Then the diamond nanoparticles were modified with silane agent. Finally, polyvinyl acetate / diamond nanocomposite was prepared and analyzed with 0.5, 1, 1.5 and 2 wt% of modified diamond nanoparticles. To determine the properties and structure of the nanocomposite, FTIR, TGA, RMS, FESEM, oxygen permeation analysis was used in the films produced and contact angle measurements.
Main results: FTIR Analysis revealed that the modification of the diamond nanoparticles with the silane agent was well performed. FESEM images show that homogeneous nanocomposites were created. Oxygen permeability in polyvinyl acetate / diamond nanocomposite film decreases with increasing percentage of modified nanoparticles in nanocomposite. This is a valuable property if this nanocomposite is used as a fruit preservative coating. Contact angle measurement of polyvinyl acetate / diamond nanocomposite showed that by increasing the amount of modified diamond nanoparticles from 0.5 to 2 wt %, the hydrophobicity of nanocomposite film increased. Therefore, by increasing the specific amount of nanoparticles to the polymer matrix, the polymer properties such as heat resistance and tensile strength are increased which increases the efficiency of the polymer.



Volume 4, Issue 1 (6-2020)
Abstract

Abstract
Research Subject: In recent years, the use of graphene nanoplatelets (GnPs) in polymer nanocomposites has attracted considerable attention. Dispersion state of GnPs in the polymer matrix has a great importance which can affect microstructure and final properties of nanocomposite. Therefore, in the present work, the effect of compatibilizer on the dispersion state of GnPs and also on internal structure, orientation, and tensile properties of polypropylene (PP)/GnPs nanocomposite fibers are investigated.
Research Approach: PP/GnPs nanocomposite fibers containing 0.1% and 0.5% GnPs with and without
maleic anhydride-grafted polypropylene (PP-g-MA) were melt spun. Dispersion state and location of GnPs in the nanocomposite fibers were investigated by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Fiber orientation and crystallinity were studied by polarized Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC), respectively. Moreover, fracture behaviour of PP/GnPs nanocomposite fibers was investigated by cross-sectional scanning electron microscopy (SEM) images of tensile fractured samples. Using Halpin-Tsai model, experimental tensile moduli of fibers were compared with the predicted values. 
Main Results: TEM images show that in the compatibilized PP/MA/GnPs nanocomposite fibers, GnPs aggregates decrease and their size also reduces, suggesting that GnPs dispersion improved. An increase in Lp of the compatibilized sample recorded from SAXS analysis indicates that the more GnPs are located in the intrafibrillar region. Based on polarized FTIR and DSC results, orientation and crystallinity of PP/G0.5 nanocomposite fiber are found to significantly increase after inclusion of PP-g-MA. Moreover, reinforcing effect of GnPs in PP/MA/GnPs nanocomposite fibers could be explained by better GnPs dispersion and changes in internal structure of fiber. Furthermore, the tensile fracture behavior of PP/GnPs nanocomposite fiber changes from ductile to brittle in the presence of PP-g-MA.

Volume 4, Issue 3 (12-2015)
Abstract

In order to improve the properties of myofibrillar protein-based film from silver carp (Hypophthalmichthys molitrix), nanofibrillated cellulose (NFC) at 3 levels (1, 3 and 5%) was used. Optimum treatment was determined by evaluating the mechanical, physical and optical properties as well as scanning electron microscopy analysis (SEM). Cellulose nanoparticles had no effect on tensile strength but reduced the elasticity of film (p≤0.05). Water vapor barrier property (WVP) and other physical properties of the films were improved by addition of nanofibrillated cellulose at 1%, but decreased at higher concentrations (p≤0.05. Based on SEM, low concentrations of nanoparticles showed more homogeneous dispersion and films had a smoother and better cross-sectional area compared to the higher levels of nanoparticles. Generally, low levels of nanoparticles could be effective to improve the mechanical and physical properties of myofibrillar protein - nanofibrillated cellulose films.  

Volume 4, Issue 3 (12-2020)
Abstract

Research subject: The sensitivity of electrical conductivity of rubber/conductive filler composites against swelling strains is a phenomenon that can lead to the creation of sensors to detect the type or leakage of hydrocarbon liquids. In the swollen conductive composites, the variation of filler network structure reduces the Statistical frequency of the tunneling and interconnection of conductive particles. This behavior can be a sign for a solvent or hydrocarbon fuel detector system in a flexible sensors.
Research approach: In this study, nitrile rubber/graphite composite samples with several concentrations (20, 30, 40, 50, 60, 70 and 80phr) of graphite particles were prepared and their electrical characteristics were measured. The changes in the electrical resistance of nitrile rubber /graphite samples were investigated based on increasing the content of graphite particles, immerse to toluene, and repeating the period of the swelling/recovery process for each sample.
Main results: The sensitivity of composites with higher concentrations than the percolation threshold (53.5phr of graphite particles) to the conductivity changes due to the swelling phenomenon is appropriate for use in the sensor. Also, incremental changes in the electrical resistance of the samples immersed in the toluene solvent were measured and it was observed that all the samples were eventually converted to electrical insulation. In order to study the repeatability performance of sensor, samples with 60, 70 and 80phr of filler were swelled and recovered for three periods, which is less than the conductivity of the sample before the second and third swelling process compared to the conductivity before the first one. This difference is very small in the sample containing 80phr of graphite particles. The trend of change in electrical resistance is significantly different in the second swelling process compared to the primary swelling. But there is little difference between the third swelling process and the second one. This phenomenon has occurred for all three samples, which can be observed to be similar to Mullins effect.

Volume 4, Issue 3 (12-2020)
Abstract

Metformin enhances insulin's effect and increases cells’ sensitivity to insulin. In this paper, nanocomposite was designed and used in the metformin release system, which was able to release the required drug in a controlled manner. In this research, nanoparticles of zinc oxide (ZnO) were prepared via the sol-gel method. The experimental design central composite response surface method was applied for the optimization of the nanoparticles based on varied variables such as the weight of zinc acetate (gr) (X 1) and the volume of triethanolamine (ml) (X2). The particle size of the optimized nanoparticle was reported to be 28 ± 21.27 nm; zeta potential and PdI were 25.54 ± 1.64 mV, 0.168 ± 0.05 respectively. The chitosan polymer was used to improve environmental compatibility and increase drug release control; finally, metformin was loaded on the optimized nanocomposite. Structural properties were analyzed using scanning electron microscopy (SEM) X-Ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and Dynamic Light Scattering (DLS). The SEM images showed that the average nanocomposite size was 40 nm. The results of XRD patterns and SEM images were also consistent with each other and the average particle size was the same. Infrared spectrophotometry showed the presence of chitosan used to coat nanoparticles on their surfaces and confirmed the loading of metformin. An in-vitro metformin release from the nanocomposite was conducted in PBS (pH=7.4) and analyzed by a spectrophotometer at 233 nm. Metformin has a high solubility in water, and since it is difficult to prepare a slow release form of high-solubility drugs, the aim of this study was to design a slow-release formulation of metformin with a suitable profile that could control release without explosive release for up to 120 hours.

Volume 5, Issue 1 (3-2014)
Abstract

As a light verb, the verb “∫odan” contributes in the structure of a wide range of verbs and forms different applied concepts, including the expression of the change of state. In the French language, there are many different verbs and structures, which could be known as equivalents of the verb “∫odan”  for expressing the change of state. Therefore, incorrect use of any of these equivalents is a great concern for Iranian learners, and usually leads to misunderstandings. This paper will firstly study the two verbs, “∫odan” and “devenir” in Persian and French languages, respectively. Then we will introduce the equivalents of the verb “∫odan” in French language. Next the verb “devenir” will be studied in contrast with other French verbs, which express the change of state. Finally, the aspectual values of the verb “∫odan” and its equivalents in French language will be dealt with.  

Volume 5, Issue 1 (7-2021)
Abstract

Research subject: Nanomaterials are substances that, because of their size, can easily penetrate small pores and apply their impact. Nanofluids can allow appropriate wettability change in the reservoir rock, therefore, an accurate understanding of the behavioral mechanisms of these nanofluids is important in changing the wettability. This is because if there is no proper understanding of these mechanisms, they may exhibit the opposite behavior and cause damage to the reservoir. In previous research, CuO / TiO2 / PAM nanocomposite was synthesized and mechanistically introduced.
Research approach: In this study, in continuation of the previous study, the behavioral and mechanism study has been investigated in a more accurate and documented manner, and spectral absorption tests, chemical flooding, and relative permeability diagrams confirm the effectiveness of enhanced oil recovery results of this nanocomposite. In carbonate rocks due to the positive surface charge of the rock and the negative charge of the nanocomposite, adsorption of nanomaterials in a double electrode layer state has been suggested as the dominant mechanism of wettability change. In sandstone rocks due to the charge coincidence of rock surface and nanomaterials which are both negative, the mechanism of disjoining pressure was the dominant mechanism of wettability change. To prove the abovementioned behaviors 200 ppm concentration of nanofluid was analyzed by spectroscopy method of adsorption analysis to validate the attraction forces of the nanocomposite with carbonate rocks and repulsion forces with sandstones.
Main results: Dynamic chemical flood tests were performed to confirm the effectiveness of this material in increasing oil production and showed 8.5% and 6.35% increase in oil production for carbonate and sandstone lithologies, respectively. Relative permeability diagrams showed an intersection point in the carbonate system with a 10% increase in water saturation and an intersection point in the sandstone system with a 12% increase in water saturation and the behavioral effect of the material at the studied concentrations.

Volume 5, Issue 1 (7-2021)
Abstract

Research subject:Well-designed plastic foams, with respect to their cell density and cell size, open-or-close cells, and the cell uniformity, compared to their counterpart unfoamed plastic parts, beside of having the advantages of less material consumption, dimensional stability, better processability, and a higher surface quality, they can have superior mechanical and physical properties, including strength to weight, impact strength, thermal and dielectric properties. The temperature distribution in the different zones of the extruder, the qualities and quantities of the nanoparticle additives and their dispersion in the polymer matrix can have significant effect on the mechanical properties of the produced foams by the extruder.
Research approach: In this study, using an extruder, MA-g-polypropylene microcellular foams, containing 3, 7 and 9 wt% of nano-clay particles, were produced under three temperature arrangements on the extruder and the material and the processing effects on the mechanical properties were investigated.  
Main results: The result of this investigation shows that adding of nanoclay improves the mechanical properties of MA-g-PP.s foams. As an example, the results show that the sample with 7 wt% of surface modified nanoclay, owns about 10% higher impact toughness compared to the samples produced without nanoclay. Also for the same samples a rise of about 5% was recorded in Young's modulus. The microstructural studies of the produced foams by scanning electron microscope (SEM) show that adding of nanoclay can result on more foam uniformity and smaller cell size. In this study, the smallest average cell size (87.5 μm) and the lowest density (0.3 g/cm3) were recorded for a sample with 7wt% nanoclay.

Volume 5, Issue 2 (9-2021)
Abstract

The rise of bacterial infections has become a serious problem in human societies. As a result, the development of nanocomposite materials based on biocompatible and non-hazardous materials, besides having antimicrobial and biocompatibility or non-cytotoxicity, associated with unique structural properties, possesses a great importance. Research approach: In this study, bacterial cellulose (BC)/polypyrrole (PPy) and zinc nanoparticles (ZnO), which simultaneously have antimicrobial properties and cell proliferation, were introduced as a new generation of nanocomposite scaffolds produced by freeze-drying. To begin with, ZnO with different weight percentages of 1%, 3% and 5% was added to BC and then PPy in the amount of 2 mmol was embedded in the structure by in situ polymerization. FESEM images proved that the nanofibrous and porous structure of BC was also preserved in the presence of PPy and ZnO. However, after adding PPy and ZnO, they formed a dense structure and microstructure of grape clusters. By adding 2 mmol PPy into BC and upon in situ synthesizing, the tensile strength and Young modulus of BC were significantly reduced to 71 MPa and 2.5 GPa, respectively. On the other hand, with the addition of ZnO nanoparticles, the mechanical properties significantly increased (both of Young modulus and tensile strength compared to BC/PPy samples) due to the compaction of the nanocomposite aerogel’s structure and the formation of the interface of ZnO nanoparticles with both polymers of BC and PPy. The observation of the inhibition zone in the culture medium containing two gram-positive and negative bacteria, well proved the antibacterial ability of ternary nanocomposite scaffolds. The results of MT9 related to L929 on aerogels showed that by adding 3% of ZnO nanoparticles, adhesion and cell proliferation increased significantly during different days of 1 day, 5 days and 7 days of culture.

Page 1 from 20    
First
Previous
1
...