Search published articles


Showing 41 results for Computational Fluid Dynamics


Volume 1, Issue 1 (3-2023)
Abstract

Low Intensity Magnetic Separators (LIMS) are widely used in research and industry. The design of this separator is based on drum rotation inside a tank media, so that a permanent magnets placing inside the drum as an angle form, produces a magnetic field. In this study, the behavior of magnetic and none-magnetic particles of a pulp, flowing through a magnetic field in the wet LIMS, was simulated and validated by experimental results. The magnetic field variables were calculated in an FEM based simulator (COMSOL Multiphysics); while particles’ tracking was done applying CFD numerical method, enhanced by discrete phase model (DPM). The difference between the results of the simulation and the magnetic separation experimental test (recovery of magnetic particles in the concentrate product) was 16.4%. In order to quantify the results of the simulation, magnetic separation simulation was performed by changing two variables affecting the magnetic separation process (variables of particle size of the input pulp feed particles and solid percentage of input pulp) and corresponding experiments. Comparison of laboratory and simulation results showed that the trend of simulation results is consistent with laboratory results of the weight recovery (in both variables under study), so that the maximum simulation error is related to the size of 125 microns (16.5 %) and the lowest simulation error was in 180 microns (11.4 %). Also, the lowest simulation error in the weight recovery prediction was related to the pulp feed solid percentage of 15% (equivalent to 14%) and the highest simulation error was in 30% pulp feed solid percentage (16.9 %). This proposes that FEM-DPM-CFD coupling model, can be applied for simulation, optimization, design and construct 

Volume 4, Issue 2 (10-2020)
Abstract

In the present study, the agglomeration and fragmentation of asphaltene particles have been simulated in laminar using the simultaneous coupling of Discrete Element method and Computational Fluid Dynamics. A new coalescence model according to the nature of asphaltene has been proposed. Asphaltene flocs have been considered as irregular shape rigid object. Particle collisions and collision efficiency as well as the fragmentation of asphaltene flocs have been studied in details. Furthermore, the asphaltene particles growth and change in particle size distribution along with average fractal dimension changes have been investigated. During the flocculation of the asphaltene particles, the asphaltene particles grow slowly in the initial times. It can be explained by the agglomeration of primary particles and the formation of asphaltene flocs. In the middle time period, due to the collision of the flocs and the formation of large flocs, the growth of the asphaltene particles increase. At the late times, the fragmentations limit the floc growth, and eventually asphaltene particle size approximately reaches a constant value in the steady state. The lognormal distribution provides the best fit for the asphaltene PSDs which, according to previous studies, is also consistent with the nature of asphaltene. The results of proposed collision and fragmentation kernels based on simulation results are agreed well with previous studies.
 

Hamidreza Tabatabaei, Masoud Boroomand, ,
Volume 11, Issue 4 (9-2011)
Abstract

Abstract- Possibilities and limitations of 1D and 3D flow simulations in the vaneless turbocharger turbine of a 1.7 liter SI engine are presented experimentally and numerically. A test setup of the turbocharged engine on dynamometer is prepared to validate the results of numerical modeling. Various performance parameters are measured at 12 different engine speeds and the results of measurement in 3 different engine speeds are presented in this report. The complete form of the volute and rotor vanes is modeled. An extensive study on the number of meshes has been undertaken to ensure the independency to meshes. The modeling of rotating wheel is considered by Multiple Rotating Frames (MRF) technique. Finally, the variations of turbine performance parameters are studied under different pulse frequencies of the engine. The results show that at high engine speeds a 3D unsteady flow simulation is required to get reasonably accurate results. The results presented in current report will be used in simulating three dimensional steady and unsteady compressible flow within the turbine of the turbocharger.

Volume 13, Issue 4 (1-2023)
Abstract

Evaluating the response of the stem cells to different mechanical stimulation is an important issue to obtain control over cell behavior in the culture environment. One of the effective parameters in the mechanoregulation of stem cells is the microstructure of scaffolds. Evaluating the effect of microstructure of scaffold in the lab environment is very complicated. Therefore, in this study, the effect of scaffold architecture on mechanical factors in the scaffold was investigated under oscillatory fluid flow by using numerical modeling. In this study, distribution of shear stress and fluid velocity in three types of scaffolds with spherical, cubical and regular hexagonal pores with length of 300, 350, 400, 450 and 500 micrometers were investigated by using computational fluid dynamics method. The results of the computational fluid dynamics model showed that the scaffold with spherical and cubic pores shape with length of 500 micrometers and scaffold with hexagonal pores with length of 450 micrometers experienced shear stress in the range of 0.1-10 mPa. This range of the shear stress is suitable for differentiation of the stem cell to bone cells. Moreover, the result of exerting oscillatory fluid flow to these scaffolds indicated that dead zones of the scaffold, where isn’t suitable for cell seeding, was decreased due to the access of fluid flow to the different area of scaffold. The results of this study can be used in a laboratory to achieve optimal stem cell culture to provide suitable environment culture for differentiation of stem cells toward the bone cell.
 
Mehdi Maerefat, Navid Morovat,
Volume 13, Issue 11 (1-2014)
Abstract

The main goal in design of heating, cooling and air conditioning systems is to provide thermal comfort. In present study, performances of radiant cooling ceiling system and stratum ventilation have been studied separately and together to provide the overall and local thermal comfort conditions. Therefore, using computational fluid dynamics, indices PMV (predict mean vote) and PPD (predict percent dissatisfied) has been studied as two overall thermal comfort parameters. Also, vertical temperature gradient and draft risk has been studied as two indices dissatisfaction of¬¬ local thermal comfort. According to the results of this study, combining stratum ventilation and radiant cooling ceiling caused a uniform distribution of overall thermal comfort conditions. Also vertical temperature gradient decreases and there is no draft risk. Therefore combining stratum ventilation and radiant cooling ceiling is introduced as the new Strategy and application ability to provide the proper conditions to achieve overall and local thermal comfort.
Farzad Bazdidi-Tehrani, Akbar Mohammadi-Ahmar, Mohsen Kiamansouri,
Volume 14, Issue 6 (9-2014)
Abstract

The present paper investigated the capability of various non-linear k–ε models for predicting flow field and pollutant dispersion around a cubical model building with a stack vent located on its roof center within the turbulent boundary layer. One quadratic model proposed by Nisizima and Yoshizawa, and two cubic models, proposed by Lien et al. and Ehrhard and Moussiopoulos were examined by comparing their simulation results with the wind tunnel data and standard k–ε model. All the computations were performed by using the self-developed object-oriented C++ programming in OpenFOAM CFD package, which contains applications and utilities for finite volume solvers. The standard k–ε model provided inadequate results for the flow field, because it could not reproduce the basic flow structures, such as reverse flow on the roof. By contrast, the non-linear models were able to predict anisotropic stresses and correctly showed the dominant stress over the roof to be the streamwise Reynolds stress. The non-linear models were able to predict the concentration field better than the SKE model due to inclusion of the quadratic and cubic terms. Among the RANS models, the Ehrhard model showed the best agreement with the experimental data. It was shown that concentrations predicted by all turbulence models were less diffusive than those of the experiment, although the non-linear k–ε models have reduced this difference.
Nasser Fatouraee, Seifollah Gholampour, Amirsaeed Seddighi,
Volume 14, Issue 13 (3-2015)
Abstract

Occlusion of cerebrospinal fluid path increases the pressure exerted by the liquid on the walls of the ventricles and ultimately leads to hydrocephalus. This research investigated a numerical index to diagnosis the non-communicating hydrocephalus disease. At first, the diagram of velocity in Sylvius aqueduct of a healthy subject, which was obtained through a 3D FSI analysis, was compared to the similar velocity diagram extracted from CINE-PC-MRI of the same subject. Then after ensuring that the two diagrams coincide with each other, was to make sure that the problem assumptions and solution are correct. The Reynolds number in Sylvius aqueduct of a healthy subject was less than 275.7 and the maximum pressure of CSF was 616.3 Pa. Further, the conditions of ventricular system in a patient suffering from non-communicating hydrocephalus were modeled. The maximum pressure has increased to 2958.5 Pa. Regarding the cause of hydrocephalus, the maximum pressure of CSF on the brain tissue in Sylvius aqueduct was introduced as an index to assess non-communicating hydrocephalus. Finally calculated CSF pressure data of this study were compared to the data obtained through the lumber puncture (LP) test and it was found that these values are proportional to each other. Based on this finding, the CSF pressure obtained by LP test was introduced as a practical numerical index for diagnosis of non-communicating hydrocephalus.
Hamed Aghajany, Mostafa Habibnia, Hamed Jamshidi Aval,
Volume 14, Issue 14 (3-2015)
Abstract

In this article, effects of Friction stir welding tool rotational and traverse speeds were studied on the temperature distribution, material flow and formation of defects in the welding zone. Computational fluid dynamics method was used to simulate the process with commercial CFD Fluent 6.4 package. To enhance the accuracy of simulation in this Study, the welding line that is located between two workpieces, defined with pseudo melt behavior around the FSW pin tool. Simulation results showed that with increase of FSW tool rotational speed to linear speed, the material flow in front of tool became more and dimensions of the stir zone will be bigger. The calculation result also shows that the maximum temperature and stir of the material was occurred on the advancing side. The computed results showed that with incompetent heat generation, insufficient material flow caused around the pin and defects formed in weld root. The computed results were in good agreement with the experimental results of other researchers. Based on the welding parameters that used in this simulation, the maximum strain rate is predicted between -4(S-1) to +4(S-1) in the stir zone.
Ali Reza Tahavvor, Pouya Zarrinchang, Shahin Heidari,
Volume 14, Issue 15 (3-2015)
Abstract

The nose and nasal cavity and sinuses are a parts of the upper respiratory system and study the air passage into the upper component of human airway is important to improve or cure deficiency in human respiration cycle. The nose performs many important physiological functions, including heating, humidifying and filtering inspired air, as well as sampling air to smell. Previously, numerical modeling of turbulent flow in nasal cavity, sinus, pharynx and larynx has rarely been employed Since the 1990s, with the development of computed tomography technology and computational fluid dynamics, a number of numerical studies on gas and particle flows in realistic nasal cavities have been conducted and provided precise data for deeper insight of the nature of nasal airflows. Also, most of pioneering studies in this field have been developed to the investigation of only nasal cavity without sinuses especially maxillary sinus So, this research is tried to study details of turbulent airflow through all spaces in human head that air can flow through. For this purpose, study has based on computed tomography scans image of a 26-years old female head, neck and chest without problems in her respiratory system from Shahid Chamran hospital, Shiraz, Iran. It is found that, nasal resistance was contribute up to half of the total airway resistance within the first 2-3 cm of the airway and the majority of the flow in this region remained close to the septum wall and only a small proportion reached the olfactory region.
Ali Nasiri Tossi, Arman Rostampour,
Volume 15, Issue 3 (5-2015)
Abstract

Knock is a random and complex phenomenon in reciprocating engines and engine tests under knocking conditions involve high costs. In this investigation, EF7(TC) engine which is a bi-fuel spark ignition engine and has relatively high probability of knock phenomena, is used. The simulation is conducted using KIVA-3V code to simulate the engine under non-knocking and knocking conditions. ANSYS-ICEM software is used to generate structured mesh for its geometry which is provided by IPCO. The original KIVA-3V code doesn't have an auto-ignition model; therefore, a knock integral model has been added to the original code. In this paper, the results of simulation are verified using two methods, experimental in-cylinder pressure and exhaust port gas temperature. The theoretical results proved a good agreement with experimental data. Compare to experimental data, it shows that KIVA-3V and Integral Knock method could simulate knock accurately although the code cannot simulate the fluctuations of knock. Finally, development of flame in combustion chamber and formation of second flame front was investigated in numerical simulation. Besides, the simulation results show that second flame-front is created near exhaust valves and propagate onward. The results show that the model can accurately predict autoignition and calculate the effects of Knock, So, it is possible to use this model to investigate the Knock phenomenon and its effects without any experimental tests which engine damages are expected during a knocking cycle.
Jamasb Pirkandi, Mostafa Mahmoodi, Mostafa Rezvandoost,
Volume 15, Issue 6 (8-2015)
Abstract

Because of various applications of UAVs, research in this field has been developed increasingly in recent years. Propeller has considerable importance as a key factor in producing propulsion in such vehicles. Having information about a propeller’s performance variations in different operational conditions is very important in order to choose a suitable propeller for a predefined mission of the flying vehicle. For this aim, in this research a test stand was designed and fabricated to evaluate the static performance of electromotor driven propellers with application in UAVs. After collecting data by performing experimental tests, the results were compared to those obtained from the numerical and analytical techniques. In order to verify the results, a propeller was modeled and a computational method was applied based on k-ε, RNG turbulence model. The comparison of experimental, analytical and computational results shows an acceptable agreement between them. According to the results, the difference between analytical and empirical results is 0.4%, the difference between computational and empirical results is 0.3% and the difference between analytical and computational results is about 1.23%. Also in the range of the rotational speed of the propeller, the difference between computational and empirical results became less than 10% in most cases, implying the validity of the applied computational method and correctness of experimental test procedure.
Hamoon Pourmirzaagha, Vahid Esfahanian, Fereidoun Sabetghadam, Farshad Torabi,
Volume 15, Issue 9 (11-2015)
Abstract

In this paper, one-dimensional numerical optimization of lead-acid battery with finite-volume method is performed using the governing equations of battery dynamics. For validation, the present results are compared with previous studies which show good agreement. The demand for batteries with high energy and power has increased due to their use in hybrid vehicles.The major shortcoming of lead-acid batteries in industry is low energy and high weight; therefore, a cell with higher energy and lower thickness is designed by using particle swarm optimization based on developed simulation code which is less time consuming and much faster than experimental method. The results of optimization show that an optimal battery that has 85 percent higher energy can be made with the same cell length. The results also show that an optimum cell battery can be obtained with a decrease of 25 percent in weight and 23 percent in dimensions while keeping the energy content constant.
Ataollah Rabiee, Amir Hossein Kamalinia, Kamal Hadad,
Volume 15, Issue 12 (2-2016)
Abstract

Steam generators as an interface between first and second loop of light water nuclear power plants is very important in design and safety analysis. Thermo hydraulic analysis can affect the design and operation of a horizontal steam generator using prediction of vapor distribution. In this kind of thermo hydraulic analysis, simulation and study of the tube bundles is crucial in design and safety study of the steam generator two phase flow field. In this research, due to high complexity of the numerical simulation, the tube bundles have been assumed as the porous media. Two phase flow field correlations such as interfacial drag force and tube bundle resistance force have obtained by the equations that have been reported in the similar computational fluid dynamic researches. The heat transfer from primary side fluid to the secondary is calculated three-dimensionally each iteration and is supplied as a heat source on the secondary flow field calculation. Besides porous media flow field validation, decrease of computational domain has been studied using appropriate boundary conditions. It was observed that the computed void fraction compared to the experimental results show better accuracy than similar computational fluid dynamic investigations
Alireza Shakeri, Karim Mazaheri,
Volume 16, Issue 1 (3-2016)
Abstract

In this paper, a numerical method to extract rate coefficients of multi-step global reactions for combustion of hydrocarbon fuels with air regarding combustor operating conditions is presented and implemented. The numerical procedure is based on simultaneous interactions of two solvers including a solver for combustive field and another solver as numerical optimizer. A simple reactor solver namely Perfectly Stirred Reactor (PSR) is employed as a solver for reactive flow, and chemical kinetics such as detailed, skeletal or reduced can be considered as benchmark mechanism. Considering rate coefficients of predefined multi-step global reactions as design variables for Differential Evolution (DE) optimizer and the difference between product concentrations obtained from benchmark mechanism and multi-step mechanism as cost function gives optimized values of rate coefficients regarding desired conditions. To confirm reliability and applicability of the present method, three different five-step models is generated for methane-air combustion under three different operating pressure (1.0, 6.28, and 30.0 atm.) and equivalence ratio ranged between 0.4-1.0 for predicting NO and CO emissions. Product concentrations such as NO and CO and flame temperature obtained from the presented five-step mechanisms are closely in agreement with results obtained from the full GRI-3.0 mechanism. A comparative numerical study by means of Computational Fluid Dynamics (CFD) code has been performed for a laboratory scale combustor employing the generated five-step model and an eight-step pressure-dependent global mechanism (suggested by Novosselov) under operating pressure of 6.28 (atm.).
Mir-Shahabeddin Izadkhah, Hamid Erfan-Niya, Hamed Moradkhani,
Volume 16, Issue 7 (9-2016)
Abstract

Nanofluids are engineered by suspending nanoparticles with average sizes below 100 nm in traditional. The ever increasing of thermal loads in such applications requires advanced operational fluid characteristics, for example, high thermal conductivity dielectric oils in transformers and car radiators. These fluids require high thermal conduction, as long as electrical insulation. In the present work the thermophysical and rheological properties of the nanofluids such as thermal conductivity, viscosity and density are obtained from molecular dynamics simulations. These results served as initial data for computational fluid dynamics simulations to calculate heat transfer coefficient. The results show that, adding titanium oxide nanosheet in the base fluid enhanced the thermal conductivity and increased the viscosity and density of the base fluid. The theoretical calculations are confirmed the molecular dynamics simulation results and the simulation methods accuracy. The computational fluid dynamics results show that increasing the amount of titanium oxide nanosheet in the base fluid increases the heat transfer coefficient and increasing ethylene glycol ratio in base fluid leads to lower heat transfer coefficient. Also non-equilibirium molecular dynamics method can use as a effective and accurate method for nanofluids investigation. The coding which used to obtaine the thermal conductivity of nanofluid is a novel and modified type of non-equlibiruim molecular dynamics method. With using this coding the eror persentages of simulations is decreases. The other advantage of this code is reducing the simulation process, becous the molecular dynamics simulations need a long time for processing.
Nematollah Fouladi, Alireza Mohamadi, Hadi Rezaei,
Volume 16, Issue 8 (10-2016)
Abstract

In this paper, the design algorithm of a second throat exhaust diffuser applicable in altitude tests of large expansion ratio nozzles is presented. In this algorithm, the geometric parameters of the exhaust diffuser are classified into primary and secondary parts. The primary geometric parameters are calculated from normal shock theory incorporating with a correction coefficient. However, the secondary parameters are selected from the previously reported experimental results. Numerical simulation tool is utilized to satisfy the design candidates and to finalize the correction factor. Axis-symmetric compressible Navier–Stokes equations incorporated with two equation Kω-SST turbulence model are solved to extract the supersonic exhaust diffuser flow features. As a first stage of numerical analysis, we use an unsteady pressure-based solver to accelerate the solution procedure. At the second stage, we use steady density-based solver to enhance the accuracy of our solutions. The current numerical method is properly validated by experimental reported results in the literature. Finally, we focused on simulation results of a designed diffuser and described the flow futures at different boundary conditions. The simulation results are confirmed that the designed diffuser is suitable for proposed altitude test.
Amir Soleimani, Ghanbarali Sheikhzadeh, Reza Maddahian,
Volume 16, Issue 12 (2-2017)
Abstract

One of the main difficulties in employing fully coupled algorithms for solving Navier-Stokes equations is the high computation cost of coefficient matrix determination and solving the linear equation system. Therefore, the number of required iterations and computational costs may be reduced by increasing the convergence rate. This article deals with the formulation and testing of an improved fully coupled algorithm based on physical influence scheme (PIS) for the solution of incompressible fluid flow on cell-centred grid. The discretisation of improved algorithm is investigated and fully clarified, by comparing the methodology with two similar schemes. For a better insight, two benchmark problems are solved. The first problem is a steady lid-driven cavity with different Reynolds numbers between 100 and 10000. The second problem is steady flow over a backward facing step for the specified Reynolds number of 800. The history of residuals for present and previous methods are compared, in order to demonstrate the performance of the new discretization scheme. It is worth mentioning, the presented method is based on nine cells discretization. Therefore, the computational costs and memory usage of the proposed method are almost the same as previous ones. The results indicate that, the improved method converges in fewer iterations in comparison with prior methods. The new scheme can be utilized for development of the computational fluid dynamics solvers based on cell-centred grid arrangement.
Armin Najarian, Rouzbeh Shafaghat,
Volume 17, Issue 2 (3-2017)
Abstract

Demands for high speed vessels are increasing due to various usages. Reducing the resistance to achieve high speeds is an important objective in design of high speed crafts. Creating longitudinal side tunnels in the hull causes resistance reduction. Designing the boat is not right only for reducing drag force; stability and maneuverability are also important factors. In this paper, high speed tunneled hull performance is evaluated considering numerical simulation of turning circle maneuver as a standard maneuver. The numerical approach is implemented due to high and acceptable accuracy compared with mathematical models and lower cost compared to experimental tests. Among the various techniques, modeling of maneuver of the boat was performed by considering mesh movement with boat and combination of sliding mesh and movement of domain as an effective method. Reducing computation time and increasing the accuracy of solution is of its advantages. Finite volume method and k-ω model is used respectively for discretization equations and simulation of turbulence. In free surface modeling, mixture model was preferred instead of free surface model. Solution methodology was validated using experimental results of a single-hull boat. Path of the boat in various tests was presented in the result section, considering the effect of angle of rudder, thrust and movement mode of the boat on the maneuver parameters. The results show enhancing maneuverability of the boat by approaching the planing mode so that by increasing the speed and closing to planing mode, tactical diameter is reduced up to 7.5% compared to the displacement mode.
Sepideh Sarmast Sakhvidi, Amir Hossein Shamekhi, Masoud Zia Basharhagh, Amir Hossein Parivar,
Volume 17, Issue 3 (5-2017)
Abstract

The main aim of this paper is the numerical investigation of air-fuel mixture formation and spray and combustion characteristics of EF7 engine equipped with spray-guided direct injection system. For this purpose, first, a six-hole injector is simulated in three different injection pressures and to validate the fuel injection characteristics, the results are validated against the Istituto Motori-CNR experimental data. Then, the injector position is selected near the spark plug and by changing of injector angle relative to the axis of combustion chamber, the appropriate angle for optimization mixture formation is obtained. Then, the effect of injection pressure, start of first and second injection as well as the effect of two-stage fuel injection with different proportions of fuel mass at primary and secondary injection are studied on the mixture formation, wall film and engine emissions. The results showed that the injector angle is extremely effective on the mixture formation, pressure and the amount of unburned hydrocarbons due to its direct impact on wall film mass. Also, in the two-stage injection, relatively homogeneous lean mixture compared to the stratified mixture results better combustion at part load condition.
Mohammad Javad Bazrgar, Mojtaba Dehghan Menshadi,
Volume 17, Issue 4 (6-2017)
Abstract

In during take-off and landing phases, flow structures and aerodynamics forces differ from the unbounded flow field. Computational fluid dynamics were used to study the flow field of a cranked kite wing with the focus on studying vortices treatment. Different Angles of attack and heights at free stream equal to 70 m/s were investigated at Mach number 0.2. Q-criteria shows that in ground effect, vortices treatment is at angles of attack 2° similar to 0° and angle of attack 8° similar to angles 4° and 6°.According to the topology of pressure gradient vectors at the angle of attack 2°, the center of all vortices in ground effect is fixed approximately. Axial residual vorticity, axial velocity and induced suction of all vortices increase and isosurfaces of Q-criteria become thicker. At the angle of attack 8° with height decreasing, axial residual vorticity of the primary vortex and the wing kink location vortex increase and decrease respectively. Also, the kink location vortex approach to the primary vortex and it takes away from the wing surface. At the angle of attack 8°, the coherent structure of vortex between leading edge and the kink location vortex breakdown in ground effect and recirculation bubble form on the wing surface. With height decreasing, the most drag and the lift coefficients increment occur on the lower surface.

Page 1 from 3    
First
Previous
1