Search published articles


Showing 3 results for Cyclic Variation

, Mojtaba Ghorbanzadeh,
Volume 13, Issue 12 (2-2014)
Abstract

Reorganizations of cyclic variations, depending on fuel type, equivalence ratio, engine load and speed, and engine geometry, are the major purposes and may cause fluctuations of output power and unburned hydro-carbon. During this study, the effects of gasoline and natural gas (NG) as fuel on cyclic variations were investigated utilizing the recorded cylinder pressure of a research SI engine over more than 400 successive cycles. This work was performed at full load, 1800rpm and compression ratio of 8 with 0.94 equivalence ratio using gasoline-air and NG-air mixtures. ُStatistical analysis of the obtained results showed that at the above conditions the coefficient of variations (COV) of indicated mean effective pressure (imep), peak pressure (Pmax) and the crank angle position of the peak pressure for gasoline-air mixture were 2.4, 1.29 and 1.04 times of those for NG-air mixture, respectively; at the optimum ignition timing, imep of gasoline-air mixture is increasing with rising Pmax and decreasing with enhancing , however, imep of NG-air mixture seems to be independent to Pmax and .
Ebrahim Abdi Aghdam, Mohsen Bashy,
Volume 14, Issue 12 (3-2015)
Abstract

Fuel metering system and controlling fuel-air mixture of spark ignition engines have been the major goals for the researcher. Management in mixture quality and fuel economy have resulted in changing carburetor systems to injection systems. Start of fuel injection position and injection duration play important role in engine performance. In the current work a single cylinder research engine with capability of adjusting spark timing and controlling gasoline injection start position and duration was utilized. Compression ratio, engine speed and injection start position were adjusted to 8, 1800 rpm and breathing top dead center (BTDC), respectively. Injection duration and spark timing were controlled so that to achieve maximum output torque at equivalence ratio of 0.90. Fixing them, the start of injection was only changed in the range of -180 to 180°CA relative to BTDC with a 30°CA increment. For each case, cylinder pressure of 500 successive cycles were recorded and stored. The obtained results showed that the dispersion of indicated mean effective pressure (imep) data of the cases with injection position start after BTDC were higher than those of the cases with injection position start before BTDC. Also, the average values of imep and peak pressure and their coefficient of variation changed with varying fuel injection start position; and for the cases of high dispersion in imep data, the average values of imep and isfc appeared to be high and low respectively.
M. Sarabi, E. Abdi Aghdam,
Volume 20, Issue 2 (1-2020)
Abstract

The advantages and disadvantages of using gasoline and NG as single-fuel is a challenge for researchers in development of SI engines. Singular utilization of these fuels results in some advantages and disadvantages from economics, thermodynamics, pollution and development aspects and make it difficult to prefer one to the other. Assuming that using combination of the fuels can modify the output results, in the present research, different combinations of 100, 90, 75 and 60% gasoline and the rest of natural gas, designated as G100, G90, G75 and G60, were investigated in a SI single-cylinder engine at running at 1800rpm, 9 compression ratio and stoichiometric equivalence ratio. After collecting and processing in-cylinder experimental data in the combinations and different spark advances and their experimental data processing, consecutive cycle-to-cycle data were extracted and analyzed with engine output data. First, optimum spark advance of each combination was determined and then, the combinations were compared at their spark advances. The results revealed that increasing natural gas fraction in combination causes substantial reductions in standard deviation, σ, and coefficient of variation, COV of IMEP, so that σ and COV of G60 reduced by 51.6% and 49.2%, respectively, in comparison with G100. Reducing the gasoline presence in combination, the amount of CO2, NOx and HC reduced except G90 which have the higher HC and NOx, whereas, CO amount in G90 decreased to the lowest level. Also, no satisfactory performance was observed in the G90 combination.


Page 1 from 1