Showing 35 results for Damping
Volume 0, Issue 0 (8-2024)
Abstract
Masonry infills are generally assumed as non-structural elements in structural calculations and are not modeled. However, observations after past earthquakes have shown that masonry infills have significant effects on the seismic performance of structures and their seismic behavior should not be neglected. Additionally, the absence of masonry infills in the first story, which is common in structures for commercial and architectural reasons, has led to the occurrence of the soft story phenomenon in past earthquakes. The maximum interstory drift ratio (MD) is the most important criterion for assessing seismic damage and the occurrence of collapse in structures. In this study, the seismic performance of 3- and 9-story steel moment resisting frames (MRFs) with masonry infills was evaluated using a probabilistic framework considering the record-to-record variability. Two configurations were considered for the masonry infills including fully infilled and open ground story configurations. The seismic performance of the MRFs with these two configurations was compared to that of bare MRFs. The OpenSees software was employed for nonlinear modeling of the structures and masonry infills were modeled using single compression-only struts. The fundamental periods of structures with masonry infills significantly increase after the failure of the masonry infills. To evaluate these effects, Rayleigh damping was modeled using the conventional method and a modified method, which considers the severe elongation of fundamental period due the failure of infills, and the responses obtained from the two methods were compared. By performing incremental dynamic analyses using 78 far-field ground motion records, drift margin ratios (DMRs), drift fragility curves and mean annual frequencies of exceeding four MD levels of 0.7%, 2.5%, 5%, and 15% (λMD) were obtained for the structures. The MD levels of 0.7%, 2.5%, and 5% correspond to the performance levels of immediate occupancy, life safety, and collapse prevention, respectively. The MD level of 15% corresponds to the seismic collapse of the structures. The results indicate that the presence of masonry infills improves the drift performance of the MRFs with the fully infilled configuration. However, since the masonry infills experience failure at higher drift levels, their effectiveness decreases at these drift levels. Furthermore, the absence of masonry infills in the first story leads to the soft story phenomenon at lower drift levels, and therefore, the performance of the structures with the open ground story configuration is worse than that with the fully infilled configuration. It should be mentioned that at higher drift levels, due to the failure of masonry infills, the structures with the two configurations for infills have almost the same performance and close to the performance of the bare MRFs. The amplification of the soft story phenomenon in the 9-story structure causes the performance of the structure with the open ground story configuration given some drift levels to be even worse than that of the bare structure. For example, by using the modified damping method for the 3-story structure with the fully infilled configuration, the masonry infills reduce the λMD value given MD = 0.7% by 43%, but the reduction in the λMD given MD = 15% is 19%. Based on the results obtained, the conventional Rayleigh damping method in the technical literature underestimates the responses.
Volume 9, Issue 1 (12-2020)
Abstract
Damping-off disease, caused by the fungus
Rhizoctonia solani, is one of the most important diseases of cucumber plant and causes significant yield losses.
R. solani possess some characters, such as wide host range and unlimited survival in soil, that make it as pathogen one of the most difficult agents to control. Therefore, the research for finding a biocontrol agent against this disease will be valuable. Two species of mycorrhizal fungi
Glomus mosseae and Glomus clarum were evaluated against
R. solani on cucumber plants. Mycorrhiza inoculated plants with both species showed a significant reduction in disease severity (DS), 21% and 25%, respectively, whereas the disease severity was 65% for non-inoculated plants. Furthermore, the effects of mycorrhizal fungi were evaluated on growth parameters of cucumber plants. Plants inoculated with both species of mycorrhizal fungi showed a significant increase in both shoot dry weight and root dry weight compared with noninoculated plants. It is concluded that both mycorrhiza species could be an important tool to control some soil-borne pathogens, increase plant nutrients absorption and increase resistance to abiotic stresses.
Ardeshir Karami Mohammadi, ,
Volume 12, Issue 3 (8-2012)
Abstract
In this paper, a linear model for vibration of electrostatically actuated annular microplate with In this paper, a linear model for symmetrical vibrations of electrostatically actuated annular microplate with thermoelastic damping is considered for calculating the quality factor of this damping. The Kirchhoff–Love plate theory is used to model the microplate which is coupled with thermal conduction equation one dimensionally. For calculating the Q-factors in each mode, two methods are compared with respect to linearization of frequency equation. Also the dependency of thermoelastic damping to electrostatic load and geometry of annular microplate is investigated with clamped-clamped and clamped-free boundaries. A silicon annular microplate is considered as an example. The results show that, there are a critical radius and thickness which make the thermoelastic damping to be maximal. Also the results show that the effect of electrostatic load on thermoelastic damping depends on the type of boundary conditions. The effect of electrostatic load on thermoelastic damping for clamped-free boundaries is more than for clamped-clamped boundaries.
Volume 12, Issue 3 (11-2023)
Abstract
Dragon’s head Lallemantia iberica, currently is grown as an oilseed crop in dry areas of Iran. In 2019, symptoms including seedling damping-off, yellows, and wilt were observed on the plants in a commercial field in Maragheh province, Iran. Based on the morphological and molecular characters, the fungus isolated from symptomatic plants was identified as Fusarium acuminatum. The pathogenicity of the fungus was confirmed through inoculation of the host plant. Subsequently, Koch’s postulates were fulfilled by re-isolation of the same fungus from the inoculated symptomatic plants. This is the first report of Fusarium wilt disease occurring in Dragon’s head in Iran and worldwide.
Volume 13, Issue 1 (1-2010)
Abstract
Objective: To investigate the friction of rabbit’s knee joint with designed pendulum friction tester to diagnose and evaluate different pathological and therapeutic conditions following haemarthrosis, osteoarthritis, and other joint disorders.
Materials and Methods: Friction coefficient of 10 adult male Albino rabbit’s joint (5 right and 5 left knees) weighted 1.59 ± 0.27 Kg, after designing and compiling the instrument and its processing software in the Physiotherapy department of Tarbiat Modares University were measured. Maximaum pendulum rotation, number of oscillations to reach equilibrium, coefficient of friction with Stanton’s equation, exponential and linear curve fitting, average logarithmic and linear decrement methods were measured.
Results: Maximum rotation after pendulum releasing in the left joints were higher than the right ones, P<0.001. Number of oscillations to reach equilibrium in the left knees were also greater than the right knees, P=0.005. All different friction estimation methods had the same results and showed greater friction in the right in comparison to the left side.
Conclusion: The pattern of the joints amplitude decay did not have a linear behaviour and the rabbit’s knee joint coefficient of friction with nonlinear estimations was less than linear ones. The findings revealed that selecting a separate control group in such investigation is essential and the contralateral limb could not be considered as control group. Pendulum friction tester has the capability of evaluating changes in coefficient of friction after application of different therapeutic methods. These changes have
important role in diagnosis, evaluation of joint diseases and developing techniques for treating those pathologies.
Volume 13, Issue 3 (10-2013)
Abstract
Nowadays, buildings are built without required separation distance as many engineers do not consider the building pounding effects. If adjacent buildings are not separated properly from each other, pounding can occur upon earthquake occurrence, and severe damages to the buildings can be observed even if they are well designed and constructed. Engineers should realize that building pounding is a serious hazard and it has to be considered during design and construction of buildings. There are many residential building complexes, service office, agencies, schools and hospital in cities around the world which are located next to each other as the cost of land is high. In this term, hospitals with emergency facilities and emergency centers have to be protected against the damages due to the significance of such structures prior and after earthquake. Many researchers have studied building pounding to calculate the dissipated energy and the impact force between two buildings during earthquake. For this challenge, they need to have a link element, which describes impact by using spring and dashpot. Several mathematical equations were suggested to calculate two mentioned parameters. In this paper, based on mathematic relation, a new relation of damping term of impact formula is simulated to measure impact force and energy dissipation. The results of this formula are compared with another suggested formula. As it was mentioned, different materials used in building constructions cause various dynamic behaviors during earthquake. Concrete structures are typically more rigid than steel structures in similar conditions. Consequently, lateral displacements of concrete buildings may also be less than lateral displacements of similar steel structures as stiffness of concrete buildings causes decrease in natural periods during earthquake. Naturally, large lateral nonlinear displacements under time history lateral loading in concrete structures may not be observed. Buildings can collide with adjacent buildings in left and right directions. For concrete buildings, however, the impact of pounding may be more significant than those on steel structures in most situations. Many researchers have suggested new relations in terms of impact to increase the dissipated energy. Based on mathematic relation, they showed that energy dissipation depends significantly on stiffness, impact velocity and coefficient of restitution. For this challenge, by using a suggested link element, a new formula is presented to calculate the impact force and energy dissipation. To optimize the results of dissipated energy, a new relation between CR and impact velocity is suggested. As it seems that it is a need to have a reference curve to select impact velocity based on coefficient of restitution, several impact velocity and CR were evaluated. Using this curve, all of results can be optimized. Finally, a new equation of motion is assumed to select the best impact velocity and coefficient of restitution.
Volume 13, Issue 3 (10-2013)
Abstract
Nowadays, buildings are built without required separation distance as many engineers do not consider building pounding effects. If adjacent buildings are not separated properly from each other, pounding can occur upon earthquake occurrence, and severe damages to the buildings can be observed even if they are well designed and constructed. Engineers should realize that building pounding is a serious hazard and it has to be considered during design and construction of buildings. There are many residential building complexes, service office, agencies, schools and hospital in cities around the world which are located next to each other as the cost of land is high. In this term, hospitals with emergency facilities and emergency centers have to be protected against the damages due to the significance of such structures prior and after earthquake.
Many researchers have studied building pounding to calculate the dissipated energy and the impact force between two buildings during earthquake. For this challenge, they need to have a link element, which describes impact by using spring and dashpot. Several mathematical equations were suggested to calculate two mentioned parameters. In this paper, based on mathematic relation, a new relation of damping term of impact formula is simulated to measure impact force and energy dissipation. The results of this formula are compared with another suggested formula.
As it was mentioned, different materials used in building constructions cause various dynamic behaviors during earthquake. Concrete structures are typically more rigid than steel structures in similar conditions. Consequently, lateral displacements of concrete buildings may also be less than lateral displacements of similar steel structures as stiffness of concrete buildings causes decrease in natural periods during earthquake. Naturally, large lateral nonlinear displacements under time history lateral loading in concrete structures may not be observed. Buildings can collide with adjacent buildings in left and right directions. For concrete buildings, however, the impact of pounding may be more significant than those on steel structures in most situations
Many researchers have suggested new relations in terms of impact to increase the dissipated energy. Based on mathematic relation, they showed that energy dissipation depends significantly on stiffness, impact velocity and coefficient of restitution. For this challenge, by using a suggested link element, a new formula is presented to calculate the impact force and energy dissipation. To optimize the results of dissipated energy, a new relation between CR and impact velocity is suggested. As it seems that it is a need to have a reference curve to select impact velocity based on coefficient of restitution, several impact velocity and CR were evaluated. Using this curve, all of results can be optimized. Finally, a new equation of motion is assumed to select the best impact velocity and coefficient of restitution.
, , , ,
Volume 13, Issue 11 (1-2014)
Abstract
In the present work the dynamic response of laminated composite beam reinforced with nano-particles has been investigated. Most of the existing works on the effects of nano-particles on stiffness of the composite structures are limited to very low weight fraction, around 3% to 5%. This work studies the effect of higher percent of Nano particles (up to 10%) on the dynamic behavior of the composite structures via experimental tests. Adding Nano clay up to 3% of weight fraction increases the natural frequency, beyond that up to 5 % the natural frequency slightly decreases and at 10% a sharp reduction in natural frequency is observed. Another feature of importance is the increasing damping coefficient of laminated beam when the amount of nano-particles reaches to 10%.
, , , ,
Volume 13, Issue 15 (3-2014)
Abstract
Nonlinear vibrations analysis of beams has its own specific importance in industrial, building and civil engineering applications. To achieve a propr design, the understanding of transverse vibrations of double end jointed beams and their nature frequencies, are very useful. In this paper the transverse vibrations analysis of beams with influence of constant axial load are investigated.the effects of mid-plane stretching and nonlinear damping terms in two case of primary and secondary resonance are also addressed. Multiple time scales method is used to make this contribution. In order to verify the accuracy of this method, the results are compared with the results of four order Runge-Kutta numerical method, which has a good accuracy. Comparison of this method and the homotopy method shoes that the convergence of this method is faster than the homotopy method.
Moharam Habibnejad Korayem, Ali Mohammad Shafei, Mahsa Doosthoseini, Behzad Kadkhodaei,
Volume 14, Issue 1 (4-2014)
Abstract
This paper presents a research into the progress of modeling of N-viscoelastic robotic manipulators. The governing equations of the system is obtained by using Gibbs-Appell (G-A) formulation and Assumed Mode Method (AMM). When the beam is short in length direction, shear deformation is a factor that may have substantial effects on the dynamics of the system. So, in modeling the assumption of Timoshenko Beam Theory (TBT) and its associated mode shapes has been considered. Although considering the effects of damping in continuous systems makes the formulations more complex, two important damping mechanisms, namely, Kelvin-Voigt damping as internal damping and the viscous air damping as external damping have been considered. Finally, to validate the proposed formulation a comparative assessment between the results achieved from experiment and simulation is presented in time domain.
Ali Ghoddosian, Masoud Pour, Mojtaba Sheikhi Azghandi,
Volume 14, Issue 2 (5-2014)
Abstract
In this research, the effects of cutting parameters on material removal rate and surface roughness, are investigated. Therefore, after that the comprehensive model of low-immersion milling is developed, the optimum cutting conditions has to be found for optimizing all of them. The stability criterion is considered as the optimization constraint which is calculated by TFEA. On the other hand, instead of using explicit equation for calculating surface roughness, such as previous works, surface roughness is calculated by TFEA for all of the cases that are needed. Finally, the ability of Genetic algorithm, Particle Swarm Optimization and Imperialist Competitive Algorithm for searching optimum cutting parameters are compared and the results are reported. By comparing the results of the three algorithms it is shown that the ICA is more powerful to deal with nonlinearity aspects of the problem and to tackle sticking in local minimums. Also it is demonstrated that the convergence rate of the ICA is faster than the other two methods. Finally, experiments to confirm the changes of the objective function toward optimal point are done and error percentage of objective function at obtained optimal point compared with experimental result is determined.
Esmail Asadi, Mahmood Farhadi Nia,
Volume 14, Issue 3 (6-2014)
Abstract
In this paper, the influence of carbon nanotubes on vibrational properties of laminated composite plates is studied theoretically and experimentally. The plates are made of glass/epoxy composite. Multi walled and single walled carbon nanotubes in different weight percentages are added to these composites. At first, carbon nanotubes are dispersed in the epoxy resin via ultrasonic procedure. Then the composite plates are made by hand layup and vacuum bagging methods in a mould manufactured for this research. Mechanical properties of the fiber composite reinforced by carbon nanotubes calculated using modified Halphin-Tsai equations. Next composite plates are modeled in ABAQUS software and frequency analysis is done. Also vibrational properties of structure are obtained by experimental modal analysis in fixed boundary condition. Experimental results showed 210% increase in damping for samples which have 0.5 weight percent of single walled carbon nanotubes (in comparison with plane glass/epoxy composite plates). Also a good agreement was observed between obtained natural frequencies from finite element analyses and experimental tests.
Mina Ghanbari, Siamak Hossainpour, Ghader Rezazadeh,
Volume 14, Issue 10 (1-2015)
Abstract
In this paper, squeeze film damping in a micro-beam resonator based on micro-polar fluid theory has been investigated. The proposed model for this study consists of a clamped-clamped micro-beam suspended between two fixed stratums. The gap between the micro-beam and stratums is filled with air. Equation of motion governing the transverse deflection of the micro-beam based on strain gradient theory and also non-linear Reynolds equation of the fluid field based on micro-polar theory have been non-dimensionalized, linearized and solved simultaneously to calculate the quality factor of the squeeze film damping. The effect of non-dimensional length scale parameter of the air and micro-beam for different values of micro-polar coupling parameter has been investigated. It has been shown that applying micro-polar theory underestimates and also applying strain gradient theory overestimates the values of quality factor that are obtained in the case of classic theory. The quality factor of the squeeze film damping for different values of non-dimensional length of the beam, squeeze number and non-dimensional pressure have been calculated and compared to the obtained values of quality factor based on classic theory.
Reza Tikani, Saeed Ziaei-Rad, Mohsen Esfahanian,
Volume 14, Issue 10 (1-2015)
Abstract
Hydraulic engine mounts are applied to the automotive applications to isolate the frame from the high frequency noise and vibration produced by the engine. It also designs to reduce the engine shake motions from the road distribution usually occurred at low frequencies. This implies that the stiffness and damping properties of the engine mount should be amplitude- and frequency- dependent. In the semi-active engine mounts this task will be done by changing the mount parameters such as stiffness and damping. Magneto-rheological fluids are used in the mounts to change their damping by applying the magnetic field. When the current is applied to the electromagnet and the magnetic field is present, the behavior of the magneto-rheological mount is changed by the magneto-rheological effects. In this paper, a prototype magneto-rheological mount was built and experimentally evaluated. Also, the mathematical model of the mount was developed to represent the dynamic behavior of the engine mount system. The model was numerically solved based on the prototype parameters and simulated in MATLAB. The experimental results were used to verify the model in predicting the mount characteristics.
Ardeshir Karami Mohammadi, Mohammad Abbasi,
Volume 14, Issue 11 (2-2015)
Abstract
In this study, the nonlinear vibration behavior of a dynamic atomic force microscope (DAFM) in the tapping mode is investigated. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained by a combination of the basic equations of the modified couple stress theory and Hamilton principle. Regarding the nonlinear dynamics of the probe, perturbation technique has been used to solve the nonlinear equations. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping factor are derived. The effect of connection position of the tip on the vibration behavior of the microcantilever are also analyzed. The results obtained by couple stress theory are compared with those of classical beam theory. The results show that the nonlinear frequency and effective nonlinear damping factor are size dependant. According to the results, an increase in the equilibrium separation between the tip and the surface sample reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping factor is negligible. The results also indicate that the change in the distance between tip and cantilever free end has a significant effect on the accuracy of the DAFM.
Hamid Moosazadeh, Behzad Ghadiri, Puria Zarifian,
Volume 15, Issue 6 (8-2015)
Abstract
The application of wing and stabilizer in aerospace vehicle is most important to stability and flight motion. Nonlinear 2D wing is estimated. Nonlinear damping and stiffness with freeplay in plunging and pitching motion is assumed. 2nd order Damping nonlinearity and 3rd order stiffness nonlinearity in pitching and plunging motion is assumed. Fully nonlinear structure with nonlinear 3rd order piston theory aerodynamic is assumed for the first time and result evaluated with different references. The equations are defined with Hamilton principle with the use of kinetic and potential energy and virtual work. They are solved in the state space via the ruge-kuta numerical method to determine chaotic and limit cycle oscillation motion of supersonic airfoil. The result show that as the speed increases, the behavior of 2D wing is softening type with the use of nonlinear rotational stiffness. But, It shows hardening type with the use of transversal nonlinear stiffness. The effect of transversal and rotational freeplay is more complicated than other parameters and increases instability in low speed. In other hand the stability increases with freeplay in high speed. As shown, increase velocity decrease damping effect in post flutter behavior.
Seyed Ali Hosseini Kordkheili, Sajjad Hajirezaie, Seyed Hassan Momeni Massuleh,
Volume 15, Issue 12 (2-2016)
Abstract
A comparison between three different time domain MIMO modal identification techniques i.e. ERA, EITD and PRCE is performed. The comparison is executed for discontinuous (mass and spring) and continuous (beam) systems in two different cases; i. e. experimental and operational modal analysis techniques. For this purpose the modal parameters of the system are measured using both direct time history data of impulse response (EMA) as well as correlation function of random response of the structure (OMA). From the results it is noted that some parameters like sampling frequency and total recording time have effect on their accuracy. Sensitivities of the results due to these parameters are measured and reported for all three considered methods. For this purpose the effecting parameters are altered between a couple of values and the sensitivity of the results is studied for all methods in both EMA and OMA cases. Finally, a comparison between the results of different methods is done and the accuracy of the methods is studied. It is concluded that ERA is the most accurate and reliable method with the least sensitivity to effecting parameters in both EMA and OMA cases.
Amir Meshkati Shahmirzadi, Saeid Irani, Mojtaba Farrokh,
Volume 16, Issue 5 (7-2016)
Abstract
In this paper the flutter phenomenon in turbomachinary is introduced. The importance and characteristics of the flutter as a dynamic aeroelastic instability is presented. Conventional methods for the blade flutter test and different approaches in flutter analysis of blade are described. Among the existing analysis methods, one approach which only examines the stabilizing effect of fluid is used in order to analyze the flutter in this paper. Firstly, its equations are described and a criterion for the determination of the stability based on the analysis results is presented. According to the criterion the local and global stability can be concluded. Numerical analysis has been performed by ANSYS CFX. Mesh independence and two different turbulence models have been examined and results have been validated by test results. Numerical analysis has been carried out for two steady and unsteady states. In unsteady state the response of fluid to blade vibration in three modes has been calculated. In order to assess the total response two methods have been used and the results have been compared. Eventually local instability has been calculated and the results presented in figures which illustrate the contribution of adjacent blades in instability of specific blade. The evaluation of global instability for three modes has been presented and the obtained results are in excellent agreement with experiment.
Mohammad Vakilifard, Mohammadjavad Mahmoodi,
Volume 16, Issue 9 (11-2016)
Abstract
In this research, a three dimensional analytical method is presented for predicting the dynamic properties of polymer nanocomposites. In the present method elastic-viscoelastic correspondence principle is applied on the simplified method of cell, and loss modulus, storage modulus, loss factor and Hysteresis loop are obtained using energy method as well as force balance method. The considered nanocomposite possesses Polypropylene as a matrix reinforced by vapor grown carbon fibers. The rrepresentative volume element consists of three isotropic phases including fiber, interphase and matrix with linear viscoelastic behavior based on Zener model. Furthermore the nanocomposite constituents dynamic properties are extracted in frequency domain by employing Fourier transform method and Schapery model First to assure the validation of the model, the results are compared with experimental results. Parametric studies such as the effects of number of subcells, fibers volume fraction (FVF) and aspect ratio, matrix/fiber link strength factor and interphase loss factor on the nanocomposite dynamic properties are investigated.. Obtained results reveal that the presented method has acceptable speed and accuracy. Moreover fiber aspect ratio and FVF increasing leads to decrease the nanocomposite hysteresis loop area, subsequently its damping capacity reduces. Interphase also contains considerable effects on the nanocomposite dynamic properties, so its modeling has a great importance.
Volume 17, Issue 3 (9-2017)
Abstract
Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations. They can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DRM) is one of the powerful and simple explicit processes. The important point is that the DRM does not require to storage the global stiffness matrix. It just uses the residual loads vector.
Utilizing the virtual masses, damping and time steps, the DRM convert a system of static equations to dynamic ones. The process is started by assuming an initial solution. The next steps are done in such a way that the residual forces are decreased. The proper value of fictitious mass and time step guarantees the convergence of the proposed DR procedure. On the other hand, the convergence rate is dependent on value of damping factor, which is calculated using the lowest eigenvalue of artificial dynamic system in the common dynamic relaxation method. It is evidence; the dynamic system oscillates when damping is zero. The convergence of DRM with zero damping factors is achieved utilizing kinetic damping or -damping. In the kinetic dynamic relaxation process, the velocities of the joints are set to zero when a fall in the level of total kinetic energy of the structure occurs. However, it is difficult to calculate the extreme point of kinetic energy. Topping suggested assuming the peak point at the mid-point of the previous time-step, when a fall down in kinetic energy is occurred. The factor in the -damping method is time step ratio of two sequence steps. The time-step ratio can be calculated in such a way that the responses converge to exact solutions.
In this paper, a comprehensive review of dynamic relaxation algorithms is presented. Of these, the popular and kinetic damping DR methods are described in detail. Then, the new dynamic relaxation algorithm is proposed. In this procedure, the artificial mass and time steps are similar to the DR methods that have been recently introduced. However, the damping factor is different with these methods. Damping factor is calculated in some specified steps. In other words, damping is zero in the most step of DR algorithm. Therefore, the total number of calculations is reduced. The concentrated damping is imposed, when the value of total kinetic energy of system is at its peak point. Utilizing the proper values of concentrated damping factors, the kinetic energy converges to zero. The presented formulation shows the relation between common and kinetic dynamic relaxation processes, too. It should be noted; the procedures of minimizing the kinetic energy of proposed method and Topping algorithm are different. The kinetic technique is required more calculations. Finally, some benchmark problems of truss and frame structures are selected. The linear and geometric nonlinear analyses are performed. The numerical results also show that the convergence rate of the new DRM increases in the majority of cases with respect to kinetic damping and also popular damping.