Showing 16 results for Design of Experiments
Volume 4, Issue 4 (3-2021)
Abstract
In this research, the possibility of asphaltene separation from the vacuum tower residue using the low cost industrial solvents such as 402, 404, 406, and 410 was investigated. In order to separate asphaltene the IP143/01 and ASTM D 3279-07 separation methods were utilized. In order to find the optimal state of asphaltene precipitation, Design of experiments software with three factors of residence time, the solvent-to-feed ratio and the volume percent of 406 solvent to the total solvent of 406 and 410 were used. The results showed that the effectiveness of each parameter in precipitating the asphaltene attributed to the ratio of solvent to feed, the ratio of solvent 406 to total solvent, and the residence time, respectively and there was a significant interaction between the basic parameters. The best asphaltene precipitation of 5.06% of 7.5% happens at the residence time of 36.97 hours, the ratio of solvent to feed of 35.95 ml/gr and the volume percent of 406 solvent to the total solvent of 27.20%. Asphaltene precipitation percentage for the optimal mixture of industrial solvents was 22.5% lower than the precipitated asphaltene from normal heptane solvent. However, according to the solvents price, industrial solvents (410 and 406) were approximately 50% cheaper than normal heptane, and hence on overall, there was a cost savings of more than 20%
M. Hoseinpour Gollo, H. Moslemi Naeini, G.h. Liaghat, S. Jelvani,
Volume 10, Issue 3 (12-2010)
Abstract
- In this paper an analytical model for prediction of angular deformation is presented. In this model convective heat losses and a multipoint distributed heat source is used for determination of the inherent strain zone which causes the bending angle. The effects of laser bending process parameters including laser power, beam diameter, scan velocity and pulse duration on the bending angle were investigated experimentally. Main effects of factors were considered and the regression line was derived. An L9 Taguchi’s standard orthogonal array was employed as experimental design and the level of importance of the laser bending process parameters on the bending angle was determined using analysis of variance (ANOVA). Comparison of the analytical model and experimental results has shown a reasonable agreement.
Mohammad Ali Ansari, Emadoddin Sadeqzadeh Naeini, Mohammad Kazem Besharati Givi, Ghader Faragi,
Volume 15, Issue 6 (8-2015)
Abstract
Friction Stir Extrusion (FSE) is a modern one step process with high efficiency for conversion and recycling of materials which capable of producing Nano-engineered material via production with good deformability, mechanical and physical properties. Novelty of this production technique is utilization of frictional heat and severe plastic deformation for material flowing, mechanical alloying and finally amendment of powder, chips and other recyclable scraps directly to useful products. Sample’s microstructure was revealed and average grain size was gained for 18 samples. Experimental parameters by use of design of experiments for two factors and analysis of variance were investigated and by the use of experimental results were validated. In this study, the effect of rotational speed in 3 levels and plunge rate in 2 levels were examined on microstructure of produced wires via FSE process. Based on process parameters, there is an equation for grain size prediction was presented by using full factorial design of experiment. Furthermore, normal possibility diagram and residual versus order based on residual theorem were evaluated for systematic error entry and reliability to experimental results. The efficient region on contour diagram reveals that suitable condition of minimum grain size and maximum strength occurred at 250 rpm for rotational speed and 14 mm/min for feed rate. It should be noted that analysis of variance showed that rotational speed, feed rate and interaction of rotational speed and feed rate respectively have a meaningful effect on the grain size of produced wire.
Volume 16, Issue 3 (10-2016)
Abstract
Population and civil infrastructure continue to expand at unprecedented rates. On the one hand, the growing needs for the development and, on the other hand, the environmental crisis, stress the importance of finding methods not harming the environment while they are able to meet the requirements for development. Infrastructure demands are even more severe in other countries, particularly in developing ones. Infrastructure is insufficient in countries such as China, where 10 million people immigrate to major cities each year. Population growth is particularly acute for historic cities and regions where expansion is limited by geographical boundaries and inadequate soil conditions. The confluence of these factors necessitates the exploration and development of new alternative soil improvement methods and associated reliable monitoring techniques. Bio-mediated soil improvement is an innovative, and interdisciplinary technique with the approach of being environmentally friendly, which utilizes some bacteria utilizing some bacteria to precipitate calcite on soil particles. In addition, this system broadly refers to a chemical reaction network that is managed and controlled within soil through biological activity and whose byproducts alter the engineering properties of soil. Therefore, Microbial carbonate precipitation (MCP) has experienced an increased level of interest in recent years for applications such as restoration of calcareous stone materials , bioremediation, wastewater treatment, strengthening of concrete and selective plugging for enhanced oil recovery. In this research, to attain the highest number of experiments without repeating the unnecessary ones, Taguchi design method was utilized. The Taguchi method was developed to improve the implementation of total quality control. The effect of factors on characteristic properties (response) and the optimal conditions of factors can be determined using the Taguchi design. It is feasible to find out the optimal experimental conditions with the least variability. Taguchi analysis is based on choosing the best run by analyzing signal-to-noise ratio (S/N), whose form depends on the experiment objective. A standard L9 orthogonal array with four parameters consisting of bacterial cell concentration, molar concentration ratio of nutrient solution, curing time, and inoculum ratio, each was assigned three levels, was selected. In this regard, soil samples were stabilized in sandy soil columns. Two-phase stabilization were conducted by adding the bacterium Sporosarcina pasteurii PTCC 1642 in the first phase and nutrient in the second phase. Specimens were subjected to direct shear stress test with the normal stress of 12.5, 40, 68 kPa. ANOVA suggested that the effect of each parameter on the direct shear stress. The most effective parameter was curing time with 45.97% of the overall variance of the experimental data followed by bacterial cell concentration (22%), molar concentration ratio of nutrient solution (20%), and inoculum ratio (12%). The direct shear strength increased from 6, 18, 31 kPa for the normal stress of 12.5, 40, 68 kPa to 470, 491, 512 kPa in optimally treated specimens.
Mahmoud Shamsborhan, Mahmoud Moradi, Ali Shokuhfar,
Volume 16, Issue 5 (7-2016)
Abstract
The most successful ‘‘top–down’’ approach to produce bulk ultra-fine grained or nanostructured materials involves the use of severe plastic deformation (SPD) processing. The amount of higher effective plastic strain per pass plays a key role on the final microstructure of SPD processed samples. In the present study the numerical experiments of the combination of the equal channel angular pressing (ECAP) and simple shear extrusion (SSE) as a new process entitled “planar twist channel angular extrusion (PTCAE)” was performed based on the Response Surface Methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations, achieving the mathematical equations, predicting the results to impose higher effective plastic strain values. Α and ϕ angles, radius and friction coefficient was imposed as the input parameters while average, minimum and maximum effective strain and maximum load was imposed as the output parameters. Governing regression equations obtained after analysis of the simulation data by Minitab software. Optimum process parameters are: α=450, Φ =450, r=2 mm and µ=0.1. Verification of the optimum results using simulation experiment was done. Good agreement between simulation, experimental and optimization was occurred.
Alireza Zahedi, Mohammad Mirabdoli, Ardeshir Shayan Nezhad,
Volume 16, Issue 9 (11-2016)
Abstract
In recent years, coinciding with the expansion of biofuel production, attempts have also been made to optimize production processes. In this study, Response Surface Methodology (RSM) was used to investigation the transesterification reaction of rapeseed oil for biodiesel production. Three main factors in order to convert triglycerides into fatty acid methyl esters (FAME) were applied according to a central composite design. These factors were catalyst concentration (NaOH), reaction temperature and time. The yield of methyl ester as the first response was determined using NMR method. The second response was the commercial cost of production. The results showed that the best conditions for producing biodiesel in constant the molar ratio of 1: 6 oil: methanol were the temperature of 47.27 oC, NaOH concentration of 1.24 %wt/wt and reaction time of 30 min. At these optimum conditions, the yield of methyl ester and cost of production is 77.67% and 67 ¢, respectively. Also, some chemical and physical properties of biodiesel were compared with petro-diesel fuel. According to the results, biodiesel fuel is a suitable substitute for petro-diesel fuel.
Amir Mostafapour, Hamed Kamali, Mahmoud Moradi,
Volume 17, Issue 8 (10-2017)
Abstract
In this research, deposition of AA7075-T6 coatings on AA2024-T351 substrates was studied. In order to investigate the influence of process parameters on the mechanical properties and microstructure, the experiments were performed based on design of experiments using Response Surface Methodology (RSM). Rotational speed (1200-1600 rpm), axial force (320-640 Kg) and feed rate (100-300 mm/min) were considered as input parameters, while coating width (w), coating thickness (t) and hardness of coating (HC), were raised as process outputs. The results reveal that joining of these two materials was done without any porosity at the interface. Hardness of coating showed a 30% decrease compared to the consumable rod in average. Thickness of deposition is decreased by increasing rotational speed, feed rate and axial force. If axial force is excessively increased, it results in development of an arc toward the plate along deposition. Microstructure of deposition turned into a totally fine-grained homogeneous structure in comparison with rod and plate microstructure.
Ahmad Manshoori Yeganeh, Saeed Khodaygan, Mohammad Reza Movahedy,
Volume 17, Issue 12 (2-2018)
Abstract
Additive Manufacturing (AM) or 3D printing is a method to build parts by adding layer-upon-layer of material. The selective laser sintering (SLS) method is one of the most important methods of additive manufacturing processes. The low time and the variety of materials used to build the parts are major advantages of SLS method. The high quality of the product is one of the main goals in the additive manufacturing processes. The part warping is one of the factors that reduce the quality of the products which are built by the SLS process. The hatching patterns and scan algorithms in the SLS process are important factors that affect the product quality. In this paper, the effective parameters of the SLS processes such as the scan vector length and the number of offsets or contours, the laser power, the laser speed, and the hitching spacing are optimally determined to minimize the part warping of the product based on the finite element simulations and Taguchi method. For this reason, SLS process has been modeled on the SLS process. Then, to illustrate and validate the accuracy and efficiency of the proposed method, and the computational results are compared to the obtained results from the experimental tests Using SLS containing CO2 laser. Finally, using the Taguchi design of Experiments, the process parameters have been changed at different levels and optimal parameters have been obtained.
Ehsan Soukhtanlou, Ali Reza Teymourtash, Mohammad Reza Mahpeykar,
Volume 18, Issue 1 (3-2018)
Abstract
The circular hydraulic jump usually forms when a liquid jet impinges on a horizontal flat plate. However, under certain conditions of fluid viscosity, volume flow rate and obstacle height downstream of the jump, the flow changes from super-critical to sub-critical and hydraulic jump changes shape from circular to polygonal. Despite the phenomenon of the hydraulic polygon jump has observed about two decades, the experimental relationship has not been presented to estimate the number of sides of hydraulic polygon jumps. The size and number of sides of a polygonal hydraulic jump depend on various factors such as fluid volume flow rate, jet diameter, fluid height downstream of the jump, and fluid physical properties; in other words, they depend on the dimensionless numbers of Reynolds, Weber, and Bond. Hence, in this study Taguchi analysis, as a Design of Experiment method, was used to investigate the effect of volume flow rate, jet diameter and obstacle height downstream of the jump on the number of the sides of a polygon hydraulic jump and Linear and nonlinear relationships was proposed for estimating the number of the sides of a polygonal hydraulic jump in terms of the above mentioned parameters.
Mahmoud Moradi, Hossein Arabi,
Volume 18, Issue 3 (5-2018)
Abstract
Laser surface hardening is one of the modern technology used to improve the surface of materials in order to modification of tribological properties. This paper investigate the ability of laser surface hardening of AISI 410 martensitic stainless steel using a continuous high power diode laser with a maximum power of 1600w. Laser power, scanning speed and focal plane position are variable parameters in this research. The effect of the process parameters on the hardness, depth and width of the hardened layer has been investigated. The results show that with increasing laser power and reducing the scanning speed, higher hardness and hardening depth are obtained. Results also reveal that width of hardened layer increases by increasing in focal plane position and reduction the laser power. Modeling of controllable variables (laser power, scanning speed and focal plane position) by Response Surface Methodology method to study the effect of process input parameters on how to change responses, and analysis of ANOVA tables, providing regression equation for output parameters, analysis The Surface Plots, Interaction Plots of the input parameters, were investigated. The results show that in RSM modeling method, the effect of laser power parameter on the results of maximum hardness, depth and width of hardness is more than the parameters of the focal plane position and scanning speed. Due to percentage of coverage of the parameters by the regression equations the RSM method is a suitable model for investigating the effects of the surface hardening process by diode laser.
M. Ghoreishi, Omid Rohani Raftar,
Volume 18, Issue 6 (10-2018)
Abstract
Laser percussion drilling is one of the advanced drilling processes that its numerous advantages have extended the applications of this process. This study focuses on experimental investigation of laser percussion drilling using Nd:YAG laser on titanium alloy Ti6Al4V sheets with various thickness which is widely used in industry. In this paper the effects of the input parameters peak power, pulse width, frequency, assist gas type, gas pressure and sheet thickness on the most important process outputs include hole entrance diameter, hole exit diameter, hole taper angle, hole entrance circularity and hole exit circularity were studied. Statistical analysis was employed to analyze the experimental data and significant parameters in each response are presented. For conducting the experiments “Design of Experiments” method and for modelling “Response Surface Methodology” were used. The results obtained show that sheet thickness affects all outputs. After that frequency and pulse width, peak power and assist gas type respectively are the most significant parameters influence process outputs. Gas pressure only affects the hole entrance circularity. For this alloy to achieve a hole with high quality, it is recommended to work at lower peak power and frequency, shorter pulse width and higher assist gas pressure with Nitrogen as assist gas.
M.e. Kazemian, A.h. Kazemian, S.m. Jaafarian,
Volume 19, Issue 12 (12-2019)
Abstract
In this paper, the effect of the Gurney flap parameters such as the angle of attack, Reynolds number, angle and height of the flap and its location from the escape edge on the lift coefficient of a symmetric airfoil is considered with the help of simulation in computational fluid dynamic software of Fluent. The turbulence model k-ε is used for the two-dimensional domain. Also, the value of the lift coefficient is introduced as a function of effective parameters by the design of experiment (DOE) method and using the backward elimination regression model which is a statistical method for selecting the model and estimated error terms. The value of the airfoil lift coefficient can be determined and predicted by the obtained function. The numerical values derived from the function of the lift coefficient resulted from the design of experiment method are in good agreement with other valid papers. The results show that at the constant attack angle by increasing Gurney flap height, lift coefficient increase. On the other hand, at the constant height of the Gurney flap, this coefficient decreases with increasing angle of attack. Moreover, the lift coefficient increased by increasing the distance of the Gurney flap from the airfoil escape edge at a 90-degree angle and 1.5%, as well as increasing the Reynolds number at a constant height of a Gurney flap.
Volume 20, Issue 1 (4-2020)
Abstract
Drop vortex is utilized to convey sewage across elevation change in steep catchments. This structure is generally used when the elevation difference is more than 5 m. Since the air and water flow are extensively combined in these structures and the sewage flow might contain detergent and foam producing materials, foam could produce in some parts of drop vortex. This phenomenon could affect vortex airflow and reduce drop vortex hydraulic performance. In this investigation, the effects of Foam Producing Flow (FPF) on vortex air discharge were studied by a scaled model and statistical Design of Experiment (DoE) methodology. Effects of Concentration Number, detergent type, and Froude Number on the dependent variable, air discharge to water discharge ratio, were studied by 33 full-factorial design and 63 runs. Analysis of the results revealed that all design factors had meaningful effects on vortex air discharge and it decreases by the increase of Concentration and Froude Number. Moreover, it was illuminated that foam formation could boost air discharge by 82% and in some conditions could reduce it more than 64%.
Volume 22, Issue 1 (6-2018)
Abstract
One of the most important goals moving toward banks customer satisfaction is reducing waiting time in branches. Banks are queuing system including that long queues of customers will cause Increase customer waiting time and decrease satisfaction. One of the effective solution for reducing waiting time is optimizing number of service personnel in each sector which in addition to reduce the waiting time, it has increases employee engagement. In this paper, simulation and experimental design method has been applied to this topic. This paper is developing a model with two objectives; Minimizing customer wait times and maximizing working time of employees. First, the current status of MELLI bank branches is simulated by ED, then Improvement scenarios is implemented by DOE methods and finally model is solved by design-expert software. The results show that most favorable option is one electronic and clear employee and five Cashiers employees. Using this method resulted in reduced waiting time by 32 percent.
, , Amir Ehsan Jaberi,
Volume 22, Issue 10 (10-2022)
Abstract
Magnetic abrasive finishing process (MAF) is one of the latest advanced machining processes. After eight decades have passed since the registration of the magnetic abrasive polishing process, the applicability of this method has been proven in finishing all kinds of surfaces, including flat, cylindrical and free surfaces. In this research, the influence of MAF process movement parameters on the concave surface of cold-worked steel has been investigated experimentally using the response surface method. These parameters include rotational speed, linear speed, gap between abrasive brush and workpiece, magnetic flux density and curvature angle. For this purpose, a spherical head magnet is used and the powder used is prepared by mechanical alloying method. Cold-worked steel is used in the manufacture of roll forming molds, which is used in air engines to shape compressor and turbine blades, and also to investigate the feasibility of the MAF process on the workpiece surface with high hardness and yield stress, such as Cold work steel is selected. According to the results, the optimal value of the magnetic flux density is 0.55 tesla, and with the increase of the distance between the abrasive brush and the workpiece, the surface roughness changes initially increase and decrease after passing the optimal value.
Pouya فیروزی راد, Hamed Ghafarirad, Seyed Mahdi Rezaei,
Volume 24, Issue 10 (9-2024)
Abstract
In this study, a droplet injection system based on a piezoelectric actuator was designed and built to evaluate the system's performance in producing droplets of varying volumes. Droplet injection systems are crucial in many biological and biomedical applications. These systems contain numerous adjustable parameters, making it challenging to predict the resulting droplet volume. To analyze the influence of different input parameters and predict droplet volume, a statistical design of experiments approach was employed using response Surface methodology. Five main factors were investigated in this research, including three parameters related to the input signal (rise time, fall time, open time, and signal amplitude), back pressure, and nozzle diameter. Different levels were considered for each parameter, and their independent and interactive effects on droplet volume were analyzed. The results indicated that all factors had a p-value of less than 0.05, confirming their significant impact on the output volume. The regression model obtained, with R2 of 0.98, showed strong predictive capability for droplet volume. Furthermore, the inverse performance of the regression model was analyzed using parameter optimization, and a comparison with the experimental setup demonstrated an error of less than 5%. This model enables the optimization of design parameters and enhances the system's performance, significantly improving the accuracy and efficiency of such devices in targeted applications