Search published articles


Showing 11 results for Diesel Engine

Bahman Najafi,
Volume 11, Issue 4 (9-2011)
Abstract

In this research work, a comprehensive combustion analysis has been conducted to evaluate the performance of a low speed diesel engine (M8/1 Lister) using biodiesel fuel. Waste vegetable cooking oil as an alternative fuel. Biodiesel obtained from waste vegetable cooking oil (WCO) as an alternative fuel. The properties of biodiesel produced from WCO was measured based on ASTM standards. In order to compare brake power, torques , brake specific fuel consumption (BSFC) and concentration of the UHC and CO emissions of the engine, it has been tested under same load of Dynamometer(5 levels) and biodiesel fuel blends (levels)) at constant engine speed(750 rpm). The results were found to be very comparable. An artificial neural network (ANN) was developed based on the collected data of this work. Multi layer perceptron network (MLP) was used for nonlinear mapping between the input and the output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. The results showed that the training algorithm of Back Propagation was sufficient in predicting the engine torque, brake power, specific fuel consumption and exhaust gas components for different engine loads and different fuel blends ratios.
Arman Hamidi, Seyed Mostafa Mirsalim, Barat Ghobadian, Amirhossein Parivar, Saeed Abdolmaleki,
Volume 15, Issue 5 (7-2015)
Abstract

Biodiesel is a renewable and sustainable alternative fuel that is derived from vegetable oils and animal fats. In this paper an experimental investigation is conducted to evaluate the use of soybean oil methyl ester (biodiesel) in the diesel fuel at blend ratios of B0, B2, B5 and B10. In this study, the performance and emissions characteristics of conventional diesel fuel and biodiesel fuel blends were compared. The tests were performed at steady-state conditions in a direct injection diesel engine with 90 kW power that was equipped with EGR and with no modification of calibration. The experimental results of brake-specific fuel consumption (BSFC), torque and exhaust temperature as well as carbon dioxide (CO2), smoke, nitrogen oxide (NOx), carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions were presented and discussed. The results of engine performance parameters at different conditions (different load and engine speed) showed that a negligible loss of engine power and a significant increase in brake specific fuel consumption due to lower heating value of biodiesel. Smoke, CO and HC emissions were decreased by increasing blends of soybean oil as compared to pure diesel. However the increase in engine NOx and CO2 emissions were observed with the increase of biodiesel percentage in the blended fuel.
Navid Farrokhi, Jamasb Pirkandi, Mehran Nosratolahi,
Volume 16, Issue 10 (1-2017)
Abstract

In the current study a combined heat and power (CHP) system based on diesel engines is studied. A CHP system is investigated parametrically according to first and second laws of thermodynamics. In this investigation instead of modeling the air standard cycle, the fuel air standard cycle and fuel combustion are simulated, which leads to more accurate results. Since a standard cycle has many differences with an actual cycle, the exhaust gas from combustion chamber of a diesel engine is also used to simulate the CHP system, and the heat exchanger of the CHP is investigated from exergetic and economic viewpoints. It was seen that applying the pre-described system, it is possible to warm up 0.17Kg/s water from 25°C to 68.64°C. This enhances the overall efficiency of the system about 20%, raising it up to 80%. Exergy destruction in heat exchanger is almost high which is due to heat transfer process and high temperature difference in the heat exchanger.
Seyed Mohammad Hosseini, Rouhollah Ahmadi, Mostafa Mohebi,
Volume 17, Issue 3 (5-2017)
Abstract

Concerning the adverse environmental impacts of fossil fuel consumption, many investigations have been performed on choosing more environmentally friendly fuel alternatives and sustainable resources. In this regard, hydrogen is considered to be one of the promising alternative fuels as its combustion features are the most similar to fossil fuels and it also falls into the category of renewable and clean fuels. This article studies the simulation of hydrogen-diesel combustion in heavy duty engine at full load and speed of 1600 rpm. All engine features including speed, spray angle, spray duration and input power are held fixed in the simulation. Variable parameter is the ratio of mass or hydrogen energy to diesel. Depending on input power of diesel, hydrogen is changed from 0% (pure diesel) to 70% (i.e. 70% is supplied from the input power of hydrogen and the remaining 30% from diesel fuel). The results of simulation show that hydrogen substitution with diesel at the best state leads to reduction of pollutants such as nitric oxides, carbon dioxide, unburned hydrocarbon, soot and carbon monoxide to 8%, 14%, 54%, 14% and 70%, respectively. This substitution however causes the reduction of indicated efficiency to 2.8%. Hydrogen substitution with diesel can also postpone the combustion, and resulting to increase PRR and HRR; however, this pressure enhancement does not lead to knocking.
Mohammad Saeedan, Mohammad Hassan Saeedi, Hamid Reza Fajri,
Volume 17, Issue 4 (6-2017)
Abstract

In this study, a numerical investigation of using Rapeseed Oil in National Diesel Engine has been developed and validated against the experimental data. By using validated model, the effect of injection timing, exhaust gas recirculation and initial pressure on performance and emissions of this engine with three different range of using diesel and biodiesel fuels have been investigated. Biodiesel fuel has two significant characteristics, existing Oxygen Atom in its structure and low lower heating value comparing diesel fuel. The results show by increasing biodiesel fuel, better combustion process has been achieved and consequently, increasing in thermal efficiency and reducing carbon monoxide emission have been observed. Because of different characteristics of biodiesel fuel, increasing and decreasing in the amount of this fuel can effect differently on engine power and producing nitrogen oxide emission.
Majid Rajabi Vandechali, Mohammad Hossein Abbaspour-Fard, Abbas Rohani,
Volume 17, Issue 5 (7-2017)
Abstract

Nowadays, the world is facing to increasing loss of fossil resources, energy crisis and environmental problems. On the other hand, diesel engines due to wide application in various sectors such as transport, agriculture, industry, etc., are the main sources of emissions and fuel consumption. Accurate measurement of fuel consumption and engine pollution is time-consuming and costly. Hence, the main objective of this study was to develop proper linear regression models of some important performance parameters of ITM285 tractor engine based on engine torque and engine speed. Experiments were carried out in 11 levels of primary engine speed (1063, 1204, 1346, 1488, 1629, 1771, 1818, 1913 and 2054 rpm) by 10 N.m steps of torque from zero (no load) to full load. The measured parameters include fuel consumption mass flow, exhaust temperature, instantaneous engine speed, maximum and mean exhaust opacities. Four different linear regression models were used to estimate the parameters. The results of regression models performance evaluation showed that quadratic model had the highest efficiency and the lowest RMSE for all parameters. The maximum and minimum effects of engine torque were on exhaust temperature and instantaneous engine speed, respectively; while, this result was completely reverse for primary engine speed. The results of regression models evaluation showed a high adaptation between the output of each model and the desired output. Also, the fuel mass flow and exhaust temperature were highly correlated to the maximum and mean exhaust opacity with correlation coefficients of 0.96 and 0.99, respectively.
Rasool Esmaelnajad, Mohamad Tagi Shervani-Tabar, Moharram Jafari, Seied Esmaeel Razavi,
Volume 18, Issue 2 (4-2018)
Abstract

One of the important ways for improving performance of diesel engines is selecting of a proper and efficient fuel injection pattern. In this study six different patterns of fuel injection have been considered and performance of a diesel engine by using these patterns of fuel injection have been investigate numerically by employing AVL Fire. An annulus nozzle have been consider for the fuel injection system. It is expected that considering an annulus nozzle lead to increase of spry cone angle and proper distribution of the fuel inside the combustion chamber. Results show that employing proper and efficient patterns of fuel injection lead to increase of engine power and decrease of exhaust pollutants gases. Results also show that by employing a quasi-triangle fuel injection pattern, the diesel engine has better performance in competition with the case of using a constant fuel injection. It is found that by employing a quasi-triangle pattern of fuel injection, SFC reduces to 0.2043 kg/kJ, while the engine power increased by 27.5% and the magnitude of NO increases slightly. In the case of employing a constant-decreasing fuel injection pattern, the magnitude of SFC reduces to 0.2029kg/kJ whereas the magnitude of NO increases in comparison with the case of using constant fuel injection pattern. Numerical results show that by employing a constant-increasing pattern of fuel injection, the engine power is approximately equal to the engine’s power in the case of using a constant fuel injection pattern. But in this case the magnitude of NO reduces considerably.
M. Gholinia, M. Pourfallah, H.r. Chamani,
Volume 19, Issue 2 (2-2019)
Abstract

The heat transfer from walls has a significant role in the correct estimation of temperature distribution in order to investigate the thermal stresses and low cycle fatigue in the engine liner. Therefore, it is necessary to investigate the details of the flow and heat transfer over a wide range of engine operation in the design and exact simulation of the cooling jacket. An efficient approach to study the cooling system is to simulate using Computational Fluid Dynamics (CFD) as a three-dimensional model by simultaneously solving the structure and fluid, which leads to accurate prediction of wall temperature and heat flux. In the present paper, the distribution of heat transfer coefficients (HTC) in the cooling jacket of a 16-cylinder heavy-duty diesel engine has been calculated, using ANSYS/Fluent based on 3D-CFD method. Also, equations of subcooled boiling phenomenon have been solved based on two commonly used patterns of Chen and BDL, and the effects of fluid pressure, velocity, and temperature at the time of the phenomenon of boiling on the heat transfer of cooling jacket wall have been studied. The results indicate that the best condition for a cooling jacket is when the coolant flow in critical heat points reaches to a velocity so that subcooled nucleate boiling occurs.

R. Rastgar , M. Amidpour , M. Shariati Niasar,
Volume 19, Issue 7 (7-2019)
Abstract

Despite recent improvement in energy efficiency of diesel engines, more than 50% of the energy input is lost as waste heat in the form of hot exhaust gases, cooling water, and heat lost from hot equipment surfaces. Exhaust pollution from internal combustion engines can potentially result in severe damages on earth atmosphere, including ozone depletion, global warming, and significant health problems. Waste heat recovery based on Rankine cycle has been identified as a potential solution to increase the energy efficiency and consequently to reduce the engine emissions. In this rather low cost technology, waste heat is recovered in a Rankine cycle, aiming to convert mechanical power into electrical power. Output electrical energy is stored in a battery and can be used in electric usages. In this paper, the possibility of using the exhaust heat recovery system without utilizing the heat of other recyclable materials has been investigated, using the organic Rankine cycle (ORC), in order to increase the efficiency of the diesel engine of the bus. Depending on amount of achievable heat of exhaust, in some performance point of diesel engine, the amount of fluid flow rate and output power of Rankine cycle was calculated. Our results exhibit 5.1 KW increase in the diesel engine power resulting in 1.12% increase in energy efficiency in engine part load condition. The output mechanical power from the micro-generator is converted to electrical power and is stored in an energy storage system. The storage energy can be utilized to supply power for electrical equipment such as fans, bulbs, and also phone chargers of passengers.  

Farid Haghighat Shoar, Bahman Najafi,
Volume 21, Issue 3 (2-2021)
Abstract

One of the major problems in the world is the supply of energy. Biodiesel is one of the alternative fuels and renewable energy sources. The use of B5 biodiesel in diesel fuel mixtures is common and most countries have planned to use B20 biodiesel. The use of natural gas in diesel engines and the study of the possibility of using it in high quantities is another new solution, which can reduce dependence on diesel fuel. In this study, biodiesel was produced from waste oil by transesterification process and used in two levels of 5 and 20% in diesel composition. Then natural gas was used in three levels of 60, 70, and 80% (% G / T) in the diesel engine. Engine tests were performed at full-load at 1500 rpm. In general, the test results showed that in conditions where biodiesel B20 was used in the composition of diesel fuel and gaseous fuel was used in the amount of 80% in a diesel engine, suitable conditions in terms of reducing emissions, increasing energy efficiency, and reducing economic costs were obtained; Under these conditions, compared to a conventional diesel engine, brake power, and energy efficiency increased by 8.86 and 29.06%, respectively. Also, brake specific fuel consumption, CO and CO2 were reduced by 26.5, 57.58, and 4.54%, respectively. Although the amount of NOx increased slightly, but, decreased the economic cost compared to diesel 26.47% $/kwh, so the results were valuable.
Mohsen Bashi, Mohsen Ghazikhani,
Volume 22, Issue 2 (1-2022)
Abstract

Numerous studies on using light fuels in compression ignition engines to reduce emission and increase efficiency have been done. The Reactivity Controlled Compression Ignition engines are one of these studies. Nevertheless, using heavy fuels vapor for achieving partially premixed combustion is not investigated. Using diesel fume (to upgrade conventional combustion to premixed combustion) resolves the need for a secondary fuel tank in a car. However, diesel fuel has heavy hydrocarbons and is a high reactivity fuel. So in this study, diesel has evaporated in a tank, and its vapor has injected into the intake air for studying a semi homogeneous combustion. The tests have performed at 2000 rpm (the speed of maximum torque). According to the achieved results, although diesel has heavy hydrocarbons and is a high reactivity fuel, adding diesel fumigation can reduce soot and NOx emissions up to 20% and 50%, respectively. Increasing load reduces the positive impact of adding diesel fumigation on soot and NOx emission reduction. However, the positive impact of adding diesel fumigation continues up to 80% of the full load. Adding diesel fumigation has no impact on cyclic variation and ringing intensity, but increases CO and HC emission. The evaporation of diesel averagely consumes 15% of brake power. Also on average, 5% of diesel evaporation energy can be supplied by recovering heat energy from the exhaust gas (warming up diesel from ambient temperature to the exhaust gas temperature).

Page 1 from 1