Search published articles


Showing 2 results for Double Pipe Heat Exchanger

Ali Shakiba, Mofid Gorji,
Volume 15, Issue 2 (4-2015)
Abstract

This study attempts to numerically investigate the hydro-thermal characteristics of a ferrofluid (water and 4 vol% ) in a counter-current horizontal double pipe heat exchanger, which is exposed to a non-uniform transverse magnetic field with different intensities. The magnetic field is generated by an electric current going through a wire parallelly located close to the inner tube and between two pipes. The single phase model and the control volume technique have been used to study the flow. The effects of magnetic field has been added to momentum equation by applying C++ codes in Ansys Fluent 14. The results show that applying this kind of magnetic field causes to produce kelvin force perpendicular to the ferrofluid flow changing axial velocity profile and creating a pair of vortices leads to increase the Nusselt number, friction factor and pressure drop. Comparing the enhancement percentage of Nusselt number, friction factor and pressure drop demonstrate that the optimum value of magnetic number for Re_ff=50 is between Mn=1.33*10^6 and Mn=2.37*10^6 So applying non-uniform transverse magnetic field can control the flow of ferrofluid and improve heat transfer process of double pipe heat exchanger.
Samira Khanjani, Akram Tavakoli, Davood Jalali Vahid, Meysam Nazari,
Volume 15, Issue 11 (1-2016)
Abstract

In this study, forced convective heat transfer characteristics of /water nanofluid flowing through a double pipe heat exchanger with plain twisted tape and cut twisted tape inserts is investigated experimentally to reveal the effect of cut twisted tape and nanofluid concentration on heat transfer. Experiments are conducted in a turbulent flow regime with Re number ranging from 4000-34000 and in the particle volume concentration range of 0<φ<0.1%.The results of thermal studies showed enhancement of convective heat transfer with nanofluids compared with flow of water. Also it was found that in higher Reynolds numbers the nanofluid has better heat transfer capability. The effects of twisted tape with and without cuts on edges on heat transfer coefficient and rate were investigated. It was found that the twisted tape with cut edges could enhance heat transfer rate better than twisted tape without cut edges. The pressure drop was investigated for flow of nanofluid and water. The results showed that there is a little difference between pressure drops in these cases. Friction factor and pressure drop in tube with plain twisted tape and cut twisted tape inserts are increased due to increasing flow resistance and contact surface between fluid and flow passage.

Page 1 from 1