Search published articles


Showing 13 results for Ductile Fracture


Volume 12, Issue 1 (3-2012)
Abstract

Progressive collapse of buildings has raised questions on adequacy of the existing regulations to prevent local and, in turn, global collapses. The present study mostly focuses on the performance of welded moment connections against progressive collapse. The performance of moment connections suggested in the FEMA 350, which are proper for seismic forces, Welded Flange Plate (WFP), Reduced Beam Seaction (RBS), Welded Unreinforced Flange- Welded Web (WUF-W) and Free Flange (FF), has been studied. The models used include non-linear behavior of materials and geometrical nonlinear behavior. The behavior of steel materials used in the structure is the true behavior of steel was stress-strain, which has been considered in the model completely. The nonlinear stress-strain behavior of steel selected for modeling the real behavior of beam and column members in the structure. The material properties of all steel components were modeled using elastic-plastic material model from ABAQUS. For connection region porous material plasticity was used. The diagram of vertical force against vertical displacement for each connection was drawn, and the state of each connection failure was investigated. Making the large scale experimental models to study the progressive collapse of structures seems too difficult. Using finite element models to study the behavior of structures are relatively appropriate option with regard to time and cost. In all of the numerical models, shell (S4) element has been used to simulate the beams, columns and connections. This is a four-node element, which contains four integration points on the element. During the calculations, full integration method with more precision was used. For analysis of the models, dynamic explicit method was used. This method is suitable to analyze the models with more members having nonlinear characteristics of materials and large deformations. In this method, the central difference integrating is used to solve the dynamic equations. In every time step, this method performs simpler than other methods in solving dynamic equations since there is no need to inverse stiffness matrix in any time stage. The used numerical method has compared using the laboratorial results, which have tested in 2010 by NIST. The analytical results showed a good agreement with laboratory models. The results of numerical analyses illustrated that RBS connection has less strength in comparison with other connections and this connection reaches maximum vertical displacement with less force. Performance of FF and WUF-W connections is similar to each other. These connections more resistant in comparison with RBS. WFP connection is more resistant as compared with the WUF-W, FF and RBS connections against the failure of the column. Failure load in WFPconnection is twice of other connection, and according to the analytical results, this connection is suitable for HLOP structures. In all connections, rotation capacity corresponding to collapse prevention against column removal scenario is about twice of the accepted criteria that FEMA 350 has suggested for seismic loads.
,
Volume 13, Issue 6 (9-2013)
Abstract

Abstract- Damage of metals is a progressive physical process which finally leads to the failure of them. In this study, first, a coupled elastic- plastic- Lemaitre's ductile damage model combined with large deformations theory is developed and implemented as a subroutine into ABAQUS/EXPLICIT code. Then, by performing standard tensile and Vickers micro-hardness tests, mechanical and damage properties for St14 steel are determined. For validation of the damage model and also identified properties, cutting and fine cutting processes are simulated by the model in two cases of large and small deformation theories. Comparison of the numerical simulation results and experimental reports show that Lemaitre's ductile damage model combined with large deformation theory can accurately predict damage evolution, crack initiation, propagation, and ductile fracture in the metal forming processes with large deformations. Keywords: Lemaitre's Ductile Damage Model, Large Deformations Theory, Cutting and Fine Cutting Processes, Ductile Fracture.
Seyed Jalal Hashemi, Hassan Moslemi Naeini, Gholam Hossein Liaght, Javad Shahbazi, Amir Hossein Roohi,
Volume 14, Issue 16 (3-2015)
Abstract

Prediction of critical process parameters which causes bursting and its location in warm tube hydroforming is a key factor in hydroforming parts design. In this paper, ductile fracture criteria have been modified so that effect of variation of temperature and strain rate on fracture is considered in forming of aluminum AA6063 tubes. Calibration of modified ductile fracture criteria has been performed using uniaxial tension tests at different temperatures and strain rates. Also, fracture strain and fracture work have been obtained as functions of Zener-Holloman parameter. Tube hydroforming process of a square part has been simulated at high temperatures in Abaqus software and loading curves with various axial feeds have been used to deform the tube. Then, the formed corner radius before bursting has been predicted using modified fracture criteria. A subroutine has been written for using modified fracture criteria. A warm tube hydroforming setup has been fabricated and prediction of modified ductile fracture criteria is compared with experimental results at various temperatures. Results show that modified criteria determine the location of bursting well. Maximum of thinning occurs in transition zone which the tube loses its contact with die cavity. Also, modified Ayada criterion, rather than other criteria, predicts corner radius with little error at high temperatures. Thus, because of its precise prediction, modified Ayada criterion can be used to predict the bursting of aluminum tubes at elevated temperatures.
Mir Emad Hosseini, Seyed Jamal Hosseinipour, Mohammad Bakhshi Jooybari,
Volume 15, Issue 11 (1-2016)
Abstract

A Forming Limit Diagram (FLD) is a graph which depicts the major strains versus values of the minor strains at the onset of localized necking. Experimental determination of a FLD is usually very time consuming and requires special equipment. Many analytical and numerical models have been developed to overcome these difficulties. The Gurson- Tvergaard- Needlemann (GTN) damage model is a micromechanical model for ductile fracture. This model describes the damage evolution in the microstructure with physical equations, so that crack initiation due to mechanical loading can be predicted. In this work by using the GTN damage model, a failure criterion based on void evolution was examined. The aim is to derive constitutive equations from Gurson's plastic potential function in order to predict the plastic deformation and failure of sheet metals. These equations have been solved by analytical approach. The Forming Limit Diagrams of some alloys which studied in the literatures have been predicted using MATLAB software. The results of analytical approach have been compared with experimental and numerical results of some other researchers and showed good agreement. The effects of GTN model parameters including 〖 f〗_0 〖,f〗_C 〖,f〗_N,f_f , as well as anisotropy coefficient and strain hardening exponent on the FLD and the growth procedure of void volume fraction have been investigated analytically.
Yaghoub Dadgar Asl, Mohammad Morad Sheikhi, Ali Pourkamali Anaraki, Vali Ollah Panahizadeh Rahimloo, Mohammad Hosseinpour Gollo,
Volume 16, Issue 5 (7-2016)
Abstract

Today, with the development of technology, industries such as automotive and construction require products with variable cross section. Multiplicity of steps, dimensional limitation and high production costs of the components caused flexible roll forming process used to produce these products. One of the main defects in this process is the fracture phenomenon. The fracture is observed on the bending edges at transition zone that sheet thickness is large compared to the bending radius. In this research the fracture phenomenon is investigated on flexible roll forming process of channel section using ductile fracture criteria. For this purpose finite element simulation of the process using Abaqus software is done. The fracture defect in this process is investigated using six ductile fracture criteria by developing a subroutine. Experimental tests are performed on 27 specimens precut sheet of AL6061-T6, using flexible roll forming machine built in Shahid Rajaee University. By comparing simulation results with experimental results, numerical results were validated. In addition, by comparing the results of ductile fracture criteria with experimental results, the Argon ductile fracture criteria, was chosen as the most appropriate criterion to predict fracture. Also the effects of parameters as sheet thickness, bending radius and bending angle on fracture with argon selected criterion is studied.
Amirreza Shahani, Hamid Shooshtar,
Volume 17, Issue 1 (3-2017)
Abstract

Unlike metals for which the fracture characterization methods have been standardized in the context of linear elastic and elastic plastic fracture mechanics theories, for polymeric materials the linear and especially nonlinear theories of viscoelastic fracture mechanics has not been completely developed due to complexities regarding the viscoelastic nature of these materials. For rubbers, even the rate independent theories based on nonlinear finite elasticity have not been widely used. In practice, most researchers make use of the same methods as applied for metals to rubbers. In this paper, the common methods of fracture characterization of rubbers based on J integral and the different challenges regarding them are reviewed. Specificly, the energy dissipation effects in regions far from the crack tip and the correction methods proposed to compensate for these effects are discussed. Performing fracture toughness tests on SENT specimens of a rubbery material based on polybutadiene, it is shown that the well-known multiple specimen method for determination of Jc has a strong sensitivity to experimental errors that exhibits itself as initial crack length dependence of Jc values and is just usefull when testing numerous specimens and removing the experimental errors. On the other hand, the locus method of dissipation correction, gives a single reliable Jc value using a fewer number of specimens and with a considerably lower sensitivity to the experimental errors. Also, using this method the specimen length dependence of Jc values reported in the literature is removed, and hence, it is possible to obtain a dimension independent Jc value.
Maryam Geran Gharakheyli, Hamid Gorji, Mohammad Bakhshi, Mohammad Javad Mirnia,
Volume 17, Issue 6 (8-2017)
Abstract

Tube hydroforming is a process which is considered to produce integrated and seamless parts in recent years. The numerical prediction of tearing to design the right equipment in this process is important. In this study, the formability of 304 stainless steel tube by free bulge test was experimentally and numerically evaluated to determine the forming limit diagram. The Gurson- Tvergaard- Needleman (GTN) is a micromechanical model to predict ductile fracture of metals. In order to determine the defining parameters of the GTN damage model, the experimental tensile test of the standard sample and the finite element simulation using ABAQUS software was performed. Using this criterion in the ABAQUS software and comparing the force-displacement diagram obtained from the experimental tensile test and the finite element simulation, the parameters of the GTN model was obtained by the inverse method. Then, the geometrical parameters of the die in the free bulge hydroforming process were investigated by the GTN ductile fracture criterion and the forming limit diagram of the 304 stainless steel tube was numerically obtained. The experimental tests were also carried out to verify the results of the finite element simulation. It’s shown an acceptable agreement
Hojjat Badnava,
Volume 18, Issue 3 (5-2018)
Abstract

In this paper, a coupled plasticity-phase field model for ductile fracture is proposed. The Drucker-Prager plasticity model, which have been applied to metals, concrete, polymers, foams, and other pressure-dependent materials, is coupled with the phase field method. The governing equations are determined by a minimization principle that results in balance laws for the coupled displacement-fracture phase field problem. Furthermore, the finite element implementation, discretization and integration algorithms for the proposed model are presented for three-dimensional, plane strain and plane stress states. In addition, to control the influence of the plastic work and its effect on the crack propagation process, a threshold variable is introduced. Using a numerical example, it is demonstrated that a specific length scale and a certain minimum element size is necessary such that the regularized crack surface converges to the sharp crack. The accuracy of the proposed model and integration algorithm is verified by comparing the obtained results with existing experimental data. In addition, the Arcan sample, by means of a special test setup, allows to load a sample at different direction, and thus performing mixed mode fracture investigation using the model.
S.j. Hashemi, F. Rahmani, S.m.h. Seyedkashi,
Volume 20, Issue 6 (6-2020)
Abstract

Incremental tube forming process is capable of manufacturing tubes with different cross sections and dimensions using simple and inexpensive forming tools. In the current study, seven different ductile failure criteria are used in finite element simulations in order to obtain the forming limit diagram (FLD) of Al6063 aluminium tubes at high temperatures. The predicted FLD using these criteria are compared with experimental data to select the optimum criterion. Standard universal tensile tests in different temperatures and strain rates along with Zener-holloman parameter are performed to calibrate the failure criteria. The effects of process parameters including temperature, forming depth and forming feed are considered. The results showed that failure criteria can predict the time and location of rupture in incremental tube forming process with a good accuracy. In high temperatures, Cockroft-Latham and normalized Cockroft-Latham criteria which consider the effect of the largest tensile stress had the best prediction. Investigation of temperature and strain rate showed that by increasing temperature, the forming limit goes higher but increasing strain rate causes to decrease it.

H. Gholipour, F.r. Biglari ,
Volume 20, Issue 8 (8-2020)
Abstract

The present study is devoted to experimental and numerical investigation of in-situ tensile tests to recognize the mechanisms of ductile fracture under different stress states. The GTN model, which is a micromechanical based damage model, has used for numerical simulations. The parameters related to this model for St12 steel were identified by response surface method (RSM) through minimizing the difference between numerical and experimental results of the tensile test on a standard specimen. The void related parameters of GTN model were determined 0.00107, 0.00716, 0.01, and 0.15 for ff, fc, fN, f0, respectively. After calibrating the damage model for the studied material, the tensile tests were carried out on the in-situ specimens with different geometries. The fractographic analysis was performed to identify the ductile fracture under a wide range of stress states and two failure mechanisms were observed. The calibrated damage model was applied to FE simulations of in-situ tensile specimens for numerical study of the experimentally observed fracture phenomenon. The extracted numerical results showed a good agreement with experimental observations comparing load-displacement plots with a margin of error within 5%. The location of fracture initiation, crack growth orientation, and the displacement at fracture zone in numerical studies also showed close correspondence with experiments.

Hossein Mamusi, Mohammad Bakhshi Jooybari, Hamid Gorji, Ramin Hashemi,
Volume 21, Issue 4 (3-2021)
Abstract

Forming Limit Diagrams (FLDs) are very useful measures for safe forming of sheet metals without failure due to necking or fracture under different loading conditions. This paper uses ductile fracture criteria to predict the formability of low carbon steel sheets to evaluate their accuracy in predicting the FLDs. In addition, the fracture forming limit curves (FFLD) and necking forming limit curves (NFLD) for St12 low-carbon steel have been extracted experimentally and numerically. In the experimental procedure, the Nakazima stretching test was used. In the numerical procedure, by defining six phenomenological ductile fracture criteria in ABAQUS / Explicit finite element software, the failure is predicted and compared with the experimental results. These criteria were calibrated using 6 tests namely as In-plane shear, uniaxial tensile test, circle hole test, notched tension test, plane stress test, and Nakazima stretching test. The results showed that the criteria, which include both the stress triaxiality (η) and Lode parameter (L), provide a more accurate prediction of failure. Also to predict necking during numerical simulation of Nakazima test and also to extract the NFLD, three criteria of the second derivative of major strain, the second derivative of thickness strain and the second derivative of equivalent plastic strain have been used.
Ahmad Ghasemi, Mahdi Gharehbash,
Volume 24, Issue 4 (3-2024)
Abstract

In this research, the load-bearing capacities of epoxy-based nanocomposite specimens containing rounded-tip V-shaped notches made of epoxy resin LR 630 and nanographene oxide were studied both experimentally and theoretically under pure opening mode conditions. In order to fabricate the studied specimens, first, the tensile properties and fracture toughness of pure epoxy resin and nanocomposite materials were determined by uniaxial monotonic tension and three-point bending tests. Rectangular plates containing a central rhombic hole with four blunt V-shaped corners with a notch angle of 60° and radii of 1, 2, and 4 mm were utilized as the samples for fracture tests. Then, the samples were subjected to uniaxial tensile loading, and their load-carrying capacities (LCC) were measured. For theoretical predictions, due to the ductile behavior of the studied specimens, a combination of the equivalent material concept (EMC) with the well-known brittle fracture criterion, maximum tangential stress (MTS), was employed. Then, experimental and theoretical results were compared. The results of the experiment showed that by adding nanoparticles to the epoxy resin, its strength improved by about 8%, and it was found that the maximum discrepancy between the theoretical and experimental results was related to the groove with a radius of 4 mm, approximately 9.2%. Finally, it was observed that the new criterion (EMC-MTS) could predict the experimental results well without performing any time-consuming and complex elastic-plastic analysis.
Mohammad Albonasser, Hojjat Badnava, Sayed Hassan Nourbakhsh,
Volume 24, Issue 12 (11-2024)
Abstract

The accurate prediction of crack initiation and growth in manufacturing processes is crucial for minimizing production costs and enhancing the reliability of components. This study focuses on integrated experimental investigation and fracture modeling approach for ductile metals, particularly addressing the mechanisms of ductile fracture and shear localization. The importance of establishing robust damage criteria for accurate reliable numerical simulations cannot be denied. Current literature reveals a significant lack of data on shear and ductile fracture criteria for materials like stainless steel alloy 304. To address this gap, a series of experimental tests was conducted to extract the necessary coefficients for these criteria. Various sample geometries were analyzed to investigate the effects of different triaxiality stress states and loading rates on fracture initiation. The triaxiality stress states were chosen within a range of 0.2 to 2 and strain rates were applied at values of 0.02 s-1, 4.5 s-1, and 30 s-1. A set of coefficients for modeling ductile and shear fracture was derived, taking into account the effects of loading rate and orientation. This research not only provides critical coefficients for fracture modeling but also supports the optimization of manufacturing processes in the automotive industry and other sectors, ultimately contributing to improved material performance and component reliability

Page 1 from 1