Search published articles


Showing 3 results for Dynamic Mesh

Mohammad Hasan Javareshkian, Amir Baghri, Ali Esmaeli, Abdolmajid Zamanifard,
Volume 14, Issue 16 (3-2015)
Abstract

In this research, the plunging motion of an airfoil by a numerical method based on finite volume in different Reynolds numbers is simulated and the thickness effect, amplitude and reduced frequency on the aerodynamic coefficients are investigated. In this process, SIMPLEC algorithm, implicit solver, high order scheme and dynamic mesh method is used in unsteady simulation and the flow is supposed viscous, incompressible and laminar. Simulations are in three Reynolds 1000, 11000 and 50000, respectively, in accordance with the flight of the insects, small birds and pigeons are done in two amplitudes and three reduced frequencies. The simulation results are compared with published data to confirm the validity of research. This comparison shows comprisable agreement. Pressure distribution and Vortex shedding around airfoils show that the thickness of the airfoils delays vortex shedding and changes time-averaged thrust coefficient. Reduced frequency and amplitude of oscillation are two important parameters in this simulation, but the reduce frequency is more effective than amplitude. The response surface methodology (RSM) was used to optimize the plunging airfoil. Optimization shows that airfoil with 0.29% thickness, 3.08 reduced frequency and 0.5 dimensionless oscillating amplitude produce maximum trust coefficient.
Saman Hosseinzadeh, Bijan Mohammadi,
Volume 17, Issue 8 (10-2017)
Abstract

The Oleo-Pneumatic shock absorber has a dual function in suspension systems. Compressibility of gas plays the role of spring and oil passing through the orifice plays damper role. Shock absorber response to various excitation depends on Fluids (gas and oil) and their internal flow. Prediction of the flow behavior inside the shock absorber can reduce cost of experimental during design and optimization process and performance analysis. Numerical Fluids flow has been simulated with assumption of axisymmetric and two-phase flow. Primary phase is compressible and Redlich-Kwang-Soave equation of state has been used to describe the compressible gas behavior. Volume of fluid model (VOF) has been described the relationship between two phases. k-ε model and Scalable wall function has been chosen for modeling turbulence. The piston's movement has been simulated using dynamic mesh (layering method). The way of gas-oil mixing and temperature change during stroke, has been shown an increase in temperature about 50-degree for largest gas bubble because of compressing. However, temperature of small bubbles has been reduced to oil temperature because of higher heat exchange. In polytropic description of gas process, the polytropic expansion has been found to describe with polynomial function of stroke. Polytropic expansion value starts from 1.3, rises to 1.4, and reduces again after mixing two phases.
Anvar Ahmadkhah, Iman Arvin, Alireza Davoudinik,
Volume 18, Issue 7 (11-2018)
Abstract

The effect of the dynamic behavior of fins on the natural convection heat transfer inside a square cavity was studied numerically. Attachment of conductive thin and flexible fins with length equal to 0.2, positioned at 9 locations on both hot and cold wall was examined. The top and the bottom horizontal walls of the cavity were insulated while their left and the right vertical walls were maintained at a constant temperature T_h and T_c. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Furthermore, the dimensionless equations of flexible parts of the cavity were solved using the Newton-Raphson method. Based on our results, the dynamic behavior of the fins leads to decrease the rate of heat transfer in compared to the rigid fin. It also found the shape of the fins and its positions play an important role in decrease or increase of heat rate inside the cavity.

Page 1 from 1