Showing 8 results for Ecap
Mahmoud Shamsborhan, Mahmoud Moradi, Ali Shokuhfar,
Volume 16, Issue 5 (7-2016)
Abstract
The most successful ‘‘top–down’’ approach to produce bulk ultra-fine grained or nanostructured materials involves the use of severe plastic deformation (SPD) processing. The amount of higher effective plastic strain per pass plays a key role on the final microstructure of SPD processed samples. In the present study the numerical experiments of the combination of the equal channel angular pressing (ECAP) and simple shear extrusion (SSE) as a new process entitled “planar twist channel angular extrusion (PTCAE)” was performed based on the Response Surface Methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations, achieving the mathematical equations, predicting the results to impose higher effective plastic strain values. Α and ϕ angles, radius and friction coefficient was imposed as the input parameters while average, minimum and maximum effective strain and maximum load was imposed as the output parameters. Governing regression equations obtained after analysis of the simulation data by Minitab software. Optimum process parameters are: α=450, Φ =450, r=2 mm and µ=0.1. Verification of the optimum results using simulation experiment was done. Good agreement between simulation, experimental and optimization was occurred.
Shapor Nikbakht, Mohammad Eftekhari, Ghader Faraji,
Volume 17, Issue 1 (3-2017)
Abstract
There has been much interest in recent years in improving material properties by grain refinements using severe plastic deformation (SPD). With applying severe plastic deformation to metals, the structure changes and nanostructure produce. In this study, ultra-fine grained pure titanium fabricate by combination of Equal channel angular pressing and Extrusion process in different passes (1, 2, 4 and 6 pass). ECAP and Extrusion processes were carried out at 400°C. Then, mechanical and microstructural properties of UFG pure titanium billets produced b combination process of ECAP and extrusion process were examined and the effect of passes on mechanical and microstructural properties was investigated. The results showed that mechanical properties were improved significantly. Ultimate strength increased up to 941MPa, in the best state, while for initial sample was 505MPa, in other word ultimate stress increased about 86.3%. With this combinational method, ultimate stress increased about 60.8% for 1 pass sample, 78.8% for 2 pass sample, 86.3% for 4 pass sample and 80.8% for 6 pass sample rather than initial state. In higher passes the rate of increase are reduced due to the grains size saturation. Hardness increased from 81.85 Hv to 216.65 Hv; In other words, hardness increased 164% from initial value. Further passes of the process only have a minor effect on increasing of billet hardness. Scanning Electron Microscope also revealed that brittle fracture were takeplaced in all sample with shallow dimples.
Mohammad Eftekhari, Ghader Faraji, Omid Shapoorgan, Majid Baniassadi,
Volume 17, Issue 4 (6-2017)
Abstract
Todays, numerous researchers have focused on proposing severe plastic deformation (SPD) methods due to the superior mechanical and physical properties of achieved ultra-fine grain material. In all SPD methods a large strain is implied without any substantial dimensional change of work piece to generate UFG and even nanograin (NG) materials. Equal Channel Angular Pressing (ECAP) is one of the most successful techniques for industrial applications. Using long and thin rod is limited in ECAP process. In the present study, a combined process composed of ECAP and Extrusion processes is used on Titanium of grade 2. Titanium is extensively used in aviation and other industries because of high strength to weight value. Using combined process leads to produce high length and thin nanostructured rod. The main goal of this process is evaluation of the temperature in Extrusion process on nanostructures Titanium rods. At first, Titanium rods were processed to 4 passes by ECAP process at 400°C Then they were processed by Extrusion process in 5 different temperatures included 300, 350, 400, 450 and 500°C. The result showed that the best mechanical properties were achieved for the specimen was extruded at 300°C. Strength and hardness were severely improved. Also, the microstructure was really homogenous and refine. The mechanical properties of titanium grade 2 after combined process were equivalent to titanium grade 5 which is used in medical applications and it is expensive.
Mohammad Talafi Noghani, Mohammad Hossein Shaeri, Arezoo Esmaeili, Ahmad Razaghian Arani,
Volume 17, Issue 12 (2-2018)
Abstract
In the current research, the effect of severe plastic deformation on microstructure and mechanical properties of Al-7075 alloy focusing on toughness was investigated. For this purpose, the Al-7075 alloy was subjected to ECAP process up to 4 passes by route BC at room temperature. Microstructure and fracture surface of the specimens were analyzed by optical and electron microscopy and mechanical properties were studied by hardness, tensile and impact tests. Dynamic and static toughness of the alloy were measured from the area under the stress-strain curve and impact test, respectively. The experimental data revealed that after 4 passes of ECAP, the grain size decreased from 40 µm to about 600 nm, and the hardness and strength of the specimen increased about 2 times in comparison with initial material. Static and dynamic toughness decreased about 62% and 30% after the first pass of ECAP, respectively. While, by increasing the pass number, the static toughness increased and dynamic toughness remained approximately constant. The fracture surface of specimens revealed that the fracture of all specimens was ductile. ECAP process caused a considerable increase in strength of Al-7075 (more than 100 percent), whereas, the toughness declined slightly during ECAP process (about 30 and 5 percent in dynamic and static toughness, respectively). So, it can be concluded that one the most advantages of ECAP process in comparison with common forming process is the notable improvement of strength without considerable sacrifice of toughness.
S.m.j. Hoseini , F. Qods, H.r. Mohammadian Semnani,
Volume 20, Issue 9 (9-2020)
Abstract
This research is mainly focused on to study microstructure and mechanical properties of AA5051 aluminum alloy deformed by equal-channel angular pressing (ECAP) process at 200˚C and in BC routes and 4 four passes. The ECAP processing was carried out using die with an intersecting channel angle ‘ϕ’= 120° and corner angle ‘Ψ’= 20°. The results of uniaxial tensile test showed that tensile strength was found to be increased from 115MPa for annealed sample to 239MPa after four passes ECAP in route BC that shows that the strength in ECAP samples has increased. In addition, the percentage of elongation also decreased in initially passes and then increased slowly. Microstructure and grain refinement of specimens were investigated by optical microscopy and scanning electron microscopy and fractography were investigated by scanning electron microscopy. The grain size of annealed sample was 123μm and decreased to 18μm after four passes ECAP in route BC. The hardness also increased from 51HV in annealed sample to 90HV the fourth passes.
Sadegh Moradi, Mahdi Gerdooei, Hasan Ghaforian Nosrati, Seyyed Mojtaba Varedi-Koulaei,
Volume 22, Issue 1 (12-2021)
Abstract
The ECAP-Conform is one of the newest and less known processes that improve mechanical properties. In the present study, the effective parameters of the ECAP-Conform process for AA7075 have been investigated. Influence of parameters such as roller radius, bending angle, die channel angles, rod/roll friction coefficient, rod/die friction coefficient, and the aspect ratio of the die groove on the torque, the applied force on the die, the stress, and the effective plastic strain, the output rod curvature, and the strain distribution uniformity have been investigated. The design of experiments was carried out based on the response surface method by the Minitab software, and simulations were performed using the ABAQUS software. To validate the FEM, the ECAP-Conform process of AA7075 rod was performed and the comparison of experimental and numerical results have acceptable compliance (7.5% error). It was found that the die channel angles and the rod/die friction coefficient have a more significant effect on all responses. Moreover, to maximize the imposed strain and strength, and to minimize the process torque and curvature, as well as achieving a uniform distribution of strain, the optimal output parameters have been obtained.
Morteza Shakibaseresht, Mahmood Zabihpoor,
Volume 22, Issue 6 (5-2022)
Abstract
ABSTRACT
Equal Channel Angular Pressing (ECAP) is one of the methods of refining and fine-graining metal materials. In this research, ECAP operation was performed on samples of 5182 alloy in 1 to 4 passes at ambient temperature. After implementation of the specimens through ECAP, prepared to obtain mechanical properties such as hardness, tensile and metallography. The results of these experiments showed that the mechanical properties of the packed materials through ECAP have improved compared to the normal state. Using a scanning microscope, it was observed that the average grain size decreased from 131 μm in the initial state to 745 nm after the ECAP process after the fourth pass. The results of hardness test also showed a 213% increase compared to normal. The increase in yield stress after 4 passes is about 3 times. Finally, the crack growth of these materials under fatigue loading was compared with the non-ECAP mode by creating a suitable pre-crack. It was observed that crack growth is faster in ECAP materials and the failure surface is smoother compared to normal. Also, the deviation of the crack from its path in microstructure materials is less than normal. Finally, by comparing the Experimental results of crack growth with the results of numerical analysis, the accuracy of the numerical results is validated and confirmed.
Gouhar Ranjbari,
Volume 23, Issue 10 (10-2023)
Abstract
In this paper, tool and workpiece wear ratio and surface roughness in the removal process of Ti-6Al-4V by spark are modeled using fuzzy algorithm. In the machining process using a spark, a copper electrode is used as a tool and equal channel angular pressing (ECAP) process is applied to the tool. In this combined modelling the number of ECAP passes, current, spark presence time and spark absence time are used as input parameters. The evaluation and validation results of fuzzy modeling, using experimental data, show that the fuzzy algorithm is capable of modeling and establishing relationships between response variables based on input parameters with high accuracy. Therefore, by using this method, one can easily predict the response variables and avoid the need of conducting experiments that require spending a lot of time and cost.