Search published articles


Showing 6 results for Equation of State

Yusef. Hojjat, Mohammad. Morad. Sheikhi, Hosein . Mosavi. Hondori, Ramin. Alimohamadi,
Volume 9, Issue 1 (12-2009)
Abstract

Abstract In recent years many researches have been focused on active magnetic bearing (AMB) systems. AMB offers advantages such as, contact less and friction free operation, excellent performance over a wide range of temperature, no need for lubricant and longer life. Technology of magnetic bearings can be considered as a new field of research in Iran. This paper presents design, manufacturing and control of a magnetically levitation system with successful operation. This research concluded with documentation of the AMB technology which is prerequisite for earning the technology of active magnetic systems (AMS) and paves the way to develop it.
Mohammad Maboudi, Masoud Zia Bashrhagh,
Volume 14, Issue 15 (3-2015)
Abstract

Abstract The lack of an accurate equation of state for predicting the thermodynamic properties of materials in a wide range of temperature and pressure caused the researchers study on new equations. . In this investigation, a reverse Brayton cryocooler was simulated as a system that prepares the sub-cooled liquid nitrogen supplying the operation condition for high temperature superconductor cables. A computational code was developed for predicting thermodynamic properties of Helium and Neon using fundamental equation of state. Comparing the results with experimental data validate the accuracy of these equations in predicting the thermodynamic properties. Then, using the developed computational code, a reverse Brayton cycle with 10 kW cooling capacity, was designed and simulated and the effect of various parameters on its performance was evaluated. Performance characteristic curves were plotted to illustrate the sensitivity analysis under different operation conditions, and the influence of various parameters such as compression ratio in compressor, maximum pressure, working fluid, efficiency of the heat recovery exchanger and efficiency of expander on the performance of the cycle was addressed. The results showed that the use of neon as a refrigerant gives a better performance than helium. Efficiency of heat recovery exchanger has a significant effect on the performance of cycle, so that 3 percent increase of this parameter increases 11 percent figure of merit (FOM) of the cycle.
Alireza Teymourtash, Shahab Noorifard,
Volume 14, Issue 15 (3-2015)
Abstract

The significance of research on the specifications of the supercritical fluids becomes more evident with respect to the increase of their application in different food, chemical, polymer, oil, and gas industries. One of the major specification, is the coefficient of thermal expansion (β) where the ideal gas model was used in most of the processes in which this component is applied; the weakness of this model is that it is unable to make an accurate prediction of this parameter within the range of critical point. For this reason, in this study to determine the coefficient of thermal expansion, Redlich–Kwong equation of state is used and a new relation as a function of temperature, pressure, and compressibility is obtained. Comparing behavior of the curves obtained from this relation with experimental data, exhibits a favorable consistency. Moreover, natural convection heat transfer of the supercritical fluid in a vertical channel at constant temperature walls conditions were considered numerically. The governing equations were solved using the finite-volume method (FVM) and based on the SIMPLE Algorithm. After validation with the earlier studies. Then, the flow and heat transfer characteristics based on the obtained coefficient of thermal expansion were compared with the ideal gas assumptions. Finally, the trend of change in heat transfer coefficient away from the critical point was studied.
Seyed Masoud Bagheri, Jamal Zamani,
Volume 15, Issue 3 (5-2015)
Abstract

Given the numerous applications of thick-walled cylinders, it is important to know the behavior of these structures. There are so many relationships for cylinders and spheres containing explosives which have been found mainly based on other experimental models. Hence derive an analytical model of the behavior of structures under internal and high-rate loading, like explosion in the cylinders, is of great importance. The main objective of this paper is to derive a mathematical model of isotropic thick-walled aluminum cylinder containing TNT in which JWL equation of state is considered for behavior of explosive expansion. The strength model the present analysis is based on the Cowper-Symonds in which strain rate at each moment is used for calculation of dynamic strength according to that. Therefore, given the instantaneous explosions pressure boundary conditions as well as instantaneous strain rate and its impact on the dynamic strength of the material, is of significant importance in this paper. With employing equations of equilibrium in thick-walled cylinders, the equations of radial and circumferential stresses and radial velocities derived. Given the instantaneous geometric and boundary conditions and correction the dynamic stress of material with respect to the strain rate, radial velocity by solving the differential equation, is calculated. After extraction of radial velocity, other stress equations will be evaluated. Furthermore, with considering the assumptions and in order to assess the overall results of the analytical modeling, computer simulation was done using Autodyn software, which shows good agreement with the analytical results.
Seyed Meysam Khatoonabadi, Mahmoud Ashrafizadeh,
Volume 15, Issue 12 (2-2016)
Abstract

Numerous models have been proposed to incorporate various equations of state (EOS) into the pseudo potential model. This paper presents an investigation of different EOS types based on the Gong and Cheng model in multiphase-single component flows by the lattice Boltzmann method. Primarily, it is conducted to investigate eight EOS’s classified in four categories; the Shan- Chen EOS, the cubic EOS, the non-cubic EOS, and the cubic and non-cubic combination EOS. The results show that each EOS type results in producing relatively similar spurious currents and has a maximum achievable density ratio. Although by choosing a proper beta parameter for every EOS the simulation errors decrease dramatically, our results show it is impossible to set a constant parameter for the non-cubic EOS. Therefore, a new equation is introduced to predict an efficient beta for the cubic and the Shan- Chen EOS’s. It is also found that the non-cubic, cubic, and non-cubic and cubic combination EOS’s have a wider temperature range and larger density ratios respectively. Hence, we determine a temperature dependent function for the beta parameter prediction instead of using a fixed value for the non-cubic EOS. The results are noticeably in better agreement with those of the Maxwell construction (theoretical results).
Zeinab Noorpoor, Saeed Tavangar Roosta, Hosein Soury, Seyed Ghorban Hosseini,
Volume 22, Issue 12 (12-2022)
Abstract

Numerical methods as one of the subcategories of theoretical models can predict the behavior of energetic materials with appropriate accuracy and away of experimental tests limitations. In this investigation, computational fluid dynamics tool has been used to predict the blast wave propagation with Consideration of geometrical obstacles. Two solvers (extendedSonicFoam and blastFoam) from the open source technology module, OpenFOAM  have been used for simulations and To enhance confirmation with reality, large eddy simulation method was employed for turbulence modeling. In addition to the ideal gas equation of state (EOS), the BKW EOS, which is a complete EOS with an explicit temperature dependence, have been used to correlate the various thermodynamic parameters. Several gauges were positioned to record the pressure-time signals and the experimental data reported in the resources were used for validation. It should be noted that the maximum error of simulations was 12.29% for different blast wave parameters. deviation from standard for ideal gas numerical results was greater than that of real gas assumption and blastFoam solver has been predicted maximum positive phase overpressure, arrival time and positive phase impulse, which are the important parameters of blast wave, with less error in comparison to extendedSonicFoam solver.

 

Page 1 from 1