Search published articles


Showing 1 results for Eutectoid Steel

A. Sanatiean, A. Saghafi, H. Rastegari Koupaei,
Volume 20, Issue 6 (6-2020)
Abstract

Deep drawing process is one of the most important processes of sheet forming, which is widely used in the deformation of metal sheets in order to produce parts with complex geometry. Several studies have been carried out on some steels with good formability such as low-carbon and austenitic stainless steels. Among different types of plain carbon steels, high carbon eutectiod steels are capable to withstand cold and warm working without formation of any defect, due to their fully pearlitic microstructure without the presence of proeutectoid phases and nano-sized cementite lamella. However, no comprehensive research has been conducted on the deep drawing process of eutectoid steel. In the present research, the formability of CK75 steel sheets was experimentally evaluated using warm deep drawing process. Warm deep drawing process of the CK75 steel was studied in the temperature range near and below the eutectoid transformation temperature. The results show that deformation at 700°C (near to the eutectoid temperature) lead to the uniform distribution of thickness and less instability. On the other hand, maximum instability (e.g. thinning) was obtained by warm deformation at 550°C. At the temperature above the eutectoid transformation temperature, due to the formation of multi-phase structure and non-uniform distribution of cementite particle, the workability was reduced and led to the occurrence of rupture during deep drawing.


Page 1 from 1