Search published articles


Showing 8 results for Exergy Analysis

Mohsen Ghazikhani, Seyyed Iman Pishbin, Mohammad Reza Modarres Razavi,
Volume 14, Issue 14 (3-2015)
Abstract

Low swirl burners present an effective approach to increase stability in lean premixed combustion. Effects of swirl number as a key parameter in the performance of these burners have been investigated in several studies with different conditions of pressure, bulk velocity equivalence ratio and geometrical specifications. Swirler distance from the exit, called recess length is another key parameter, which affects the performance of the burner and there are a few studies about its effects on the performance of the burner. In this study by design and fabrication of a low swirl burner and setup a rig test, several combustion parameters include flame temperature; flow rate, pressure and temperature of the air and fuel, and analysis of combustion products have been measured. And the effects of recess length and equivalence ratio variations on the performance of the low swirl burner have been studied. In addition, the exergy analysis has been done in order to investigate the performance of these burners. Results reveal that increasing recess length would result in wider range of lifted flame for different equivalence ratios. In addition, results also show that although low swirl combustion is working on lean condition, it has about 17 percent lower irreversibility ratio in comparison with diffusion flame from second law of thermodynamic point of view. Besides, the heat transfer ratio has been increased about 14 percent in the lifted flame in comparison with the attached flame.
Nozar Akbari, Soheil Sheikhi,
Volume 17, Issue 7 (9-2017)
Abstract

Regarding the growing cost of energy, shortage of resources, and environmental issues, the importance of reducing energy consumption and optimization of related industries has been revealed more than anytime. Solar energy is one of the suitable solutions to acquire clean and cheap energy. The first step is to design the cycle using Aspen HYSYS simulator. After that exergy analysis is carried out on the proposed system. Results show that LPT2, LPT3 and HEX2 have the highest exergy destruction and should be considered for revision. Results of exergy analysis are then examined more deeply with the help of advanced exergy analysis. In this section exergy destruction is divided into four parts, endogenous/exogenous and avoidable/unavoidable to investigate the precise reason of the components’ exergy destruction. Results show that the three components which had the most exergy destruction, are the real reason behind exogenous exergy destruction of the system so by optimizing these components we can also decrease the total exergy destruction of the system too. At last by choosing the right variables and total produced work as the primary function, the optimization is done using the Aspen HYSYS optimizer and the optimized parameters are compared to the basic parameters which resulted in more power production and less exergy destruction and production cost.
Mohammad Hosseinzadeh, Ali Salari, Mohammad Sardarabadi, Mohammad Passandideh-Fard, Alireza Akbarzadeh,
Volume 17, Issue 8 (10-2017)
Abstract

In this study, the performance of a photovoltaic thermal system (PVT) is investigated in a numerical and experimental study. In the numerical part, the Taguchi method is applied to determine the optimum place and time of the PVT system. Moreover, the optimum parameters that are independent of the design of the PVT system are obtained to improve the performance of the system in a specific place and time. Using the specified optimum parameters, the performance of the system is investigated from the energy and exergy viewpoints, experimentally. In the experimental study, using the designed setup, the performance of a water based PVT system is compared with that of a conventional photovoltaic unit (PV). The experiments are performed on a selected day in August at the Ferdowsi University of Mashhad, Mashhad, Iran (Latitude: 36° and Longitude: 59°). The numerical results indicate that the most effective parameter on the performance of the PVT system is the coolant inlet temperature and its optimal value is 20 °C. Moreover, the total energy efficiency of the PVT system in the optimum working condition is 69.02 %. The experimental results reveal that the average output electrical energy of the PVT system is 6.27 % more than that of the PV unit. In addition, the average thermal energy and exergy efficiencies of the PVT system are 34.12 % and 0.72 %, respectively.
Mohammad Hosseinzadeh, Arash Kazemian, Mohammad Sardarabadi, Mohammad Passandideh-Fard,
Volume 17, Issue 11 (1-2018)
Abstract

In this study, the effects of using pure water, water/ethylene glycol mixture with 50:50 wt% and pure ethylene glycol as the working fluids on the energy and exergy efficiencies of a photovoltaic thermal (PVT) system are experimentally investigated. Moreover, the performance of the PVT systems are compared with a conventional photovoltaic (PV) system. The experiments are performed on a selected day in August at the Ferdowsi University of Mashhad, Mashhad, Iran (Latitude: 36° and Longitude: 59°). The investigated parameters in this study are: the photovoltaic cells temperature; output electrical and thermal powers; electrical and thermal energy efficiencies; output electrical and thermal exergies; and electrical and thermal exergy efficiencies. Based on the results, the PVT system with water/ethylene glycol mixture increases the output electrical power by about 5.41 % compared to that of the PV system. Furthermore, the results indicate that using pure water in the PVT system enhances electrical and thermal energy efficiencies compared to those of pure ethylene glycol and water/ethylene glycol mixture, whereas the overall exergy efficiency of PVT systems with pure water and water/ethylene glycol mixture working fluids are approximately same.
Amir Ghasemkhani, Said Farahat, Mohammad Mahdi Naserian,
Volume 18, Issue 2 (4-2018)
Abstract

In this paper, performance analysis and optimization of a trigeneration system based on different thermodynamic criteria such as energy and exergy efficiency, power and dimensionless power have been investigated. The trigeneration system consists of three subsystems which including the solar subsystem, Kalina subsystem and lithium bromide-water absorption chiller subsystem. The proposed system uses solar energy generates power, cooling and domestic water heating. Power is introduced as a tool for understanding thermodynamic concepts of limited time. Dimensionless power is defined as the ratio of power to the product of total thermal conductivity and minimum temperature of the system. Dimensionless power can be used as a tool to understand the concepts of finite time thermodynamics. The exergy analysis has shown that the most exergy destruction is related to boiler. As a result, energy and exergy efficiencies, capital cost rates and dimensionless power are 17.77%, 18.82% and 9.63 dollars per hour, 0.01781 respectively. Sensitivity analysis has shown that increasing parameters such as ambient temperature, solar radiation, the dimensionless mass flow rate of the Kalina cycle, collector inlet temperature and pressure ratio of the Kalina cycle increase energy and exergy efficiencies. Also increasing pressure ratio the of Kalina Cycle, reducing the dimensionless mass flow rate of the Kalina cycle, the ambient temperature and collector inlet temperature has led to increased dimensional power. In addition, the optimization criteria such as energy efficiency, exergy efficiency, power and dimensional power have been compared. The results showed that power and dimensional power are the best thermodynamic optimization criteria.
Mehran Abdolalipouradl, Shahram Khalilarya, Samad Jafarmadar,
Volume 18, Issue 4 (8-2018)
Abstract

The use of new energies, including geothermal energy, is rapidly devoloping in the world. In Iran, the Sabalan area has a great potential for generating energy from geothermal energy sources. In this paper, a new power generation combined cycle (flash combined cycle with supercritical carbon dioxide and organic Rankine cycle) is proposed with respect to two wells with different temperatures and pressures for Sabalan geothermal sources. For the organic Rankine cycle, four fluids are considered appropriately and then proposed combination cycle is investigated by energy and exergy analysis. In this study, a new method proposed for the determination of Pinch point for carbon dioxide heat exchangers. In the end the proposed cycle has been optimized relative to seprators pressure, the second evaporator temperature and the carbon dioxide cycle pressure ratio. The results show that the n-butane agent has been selected as the most suitable fluid for the Rankine cycle. For the optimal condition, the net power of the proposed cycle is 19934 kW, the cycle efficiency will be 17.05% and the exergy efficiency will be65.38 %.The results of exergy analysis show that the low pressure turbine in geothermal have the highest value of exergy destruction. The results show that net power output, energy and exergy efficiencies of the proposed cycle in this paper is 15.29 %, 17.06% and 18.35% higher than the corresponding values obtained for the previously proposed system.
Z. Javadi, M. Miansari, B. Ghorbani,
Volume 19, Issue 12 (12-2019)
Abstract

Regarding the water and energy crisis, improving the efficiency of thermal systems and heat recovery, along with the use of desalination process, has attracted the attention of many researchers in recent years. For this purpose, thermal desalination process and solar collectors were used in steam power plants. In this study, an integrated structure for simultaneous generation of fresh water and power has been developed using a combination of solar collectors, steam power plant for power generation, ORC cycle, and thermal multi-effect desalination cycle. The integrated structure has the capacity of producing 762.6 kg / s of fresh water, 104.1 MW of power in the rankine cycle and 306.7 MW of power in a steam power plant. In this integrated structure, the efficiency of the steam power plant is 37.24% and the total exergy efficiency is 78.54%. Exergy analysis of the integrated structure shows that the highest destruction of exergy in solar collectors and heat exchangers are equal to 45.2% and 37.27%, respectively. The economic analysis of the developed integrated structure shows that the period of return is 3.838 years, and the prime cost of the product is 0.0325 $/kWh. Moreover, the impact of various parameters on the performance of the integrated structure was investigated using sensitivity analysis.

M. Hosseinzadeh, H. Zamani, S.m. Mirzababaee, A. Faezian, F. Zarrinkalam,
Volume 20, Issue 6 (6-2020)
Abstract

In this study, a portable parabolic solar cooker is designed and fabricated, and the daily performance of the solar cooker is investigated from the energy and exergy viewpoints. One of the important challenges of the parabolic solar cookers is the reduction of their performance in the windy conditions. In order to evaluate this issue, the effect of 0.2, 2, 4 and 6m/s wind speeds on the energy and exergy efficiencies of the solar cooker is studied. Based on the results, the energy efficiency of the parabolic solar cooker is 34.52-46.19% and the exergy efficiency is 2.11-5.60% during the experiment. The experimental results indicate that water can boil in the windy conditions using the fabricated solar cooker although the time required to boil water increases by rising the wind speed. According to the results, in the wind speed of 6m/s, the time taken to boil 2 liters of water is about 40min. Furthermore, the energy and exergy efficiencies of the parabolic solar cooker in the wind speed of 6m/s are 20.08% and 1.99%, respectively, lower than those in the wind speed of 0.2m/s.


Page 1 from 1