Search published articles


Showing 2 results for Exhaust Gas Recirculation

M. Talei, S. Jafarmadar, Sh. Khalilarya,
Volume 20, Issue 1 (1-2020)
Abstract

In the present research, the performance of a single-cylinder engine with a pre-chamber and natural gas fuel designed in Urmia University has been investigated and the effect of Exhaust Gas Recirculation (EGR) on engine performance has been analyzed. The results indicate that the simultaneous use of the pre-chamber and the EGR reduces significantly nitrogen oxides emission. Also, the amount of unburned hydrocarbons (HC) decreases in the low EGR, but the amount of HC increases significantly with higher EGR. EGR increases the carbon monoxide (CO) emission but does not have a significant effect on carbon dioxide (CO2) emission. Simultaneous use of EGR and pre-chamber can reduce the amount of emission while it can maintain the engine braking. The engine power and the indicated mean effective pressures (IMEP) which are the main indicators of the engine's performance, decrease by 3 to 4 percent for every 5 percent of the EGR. The results show that the EGR reduces the velocity of the jet flames out of the pre-chamber which ultimately reduces the advance of the flame front. Analysis of the results of the experimental test and the simulated model shows that an ideal range for EGR in an engine with a pre-chamber can be defined in which the emission is minimal and the engine power is maintained. In the engine used in this research, the exhaust gas reaction is in the ideal 10% range.

S. Ghaffarzadeh, A. Nassiri Toosi , M.t. Zarrinkolah,
Volume 20, Issue 8 (8-2020)
Abstract

RCCI as low temperature combustion is one of the common methods for reducing nitrogen oxides and soot pollutants. In this study, the effect of exhaust gas recirculation on combustion and emission of an RCCI engine, fueled with diesel and CNG was investigated. The investigated engine is a single-cylinder engine with diesel direct injection to the combustion chamber as high-reactivity fuel and a port fuel injection of CNG fuel as low-reactivity fuel. The start of injection, the injection shape, and the injection duration of both injectors are controlled by the developed ECU. Since the engine tested has good stability in the premix ratio of 60% and is capable of operating with high EGR percentage, it was selected for investigation. The results of this study show that with an increase of the exhaust gas recirculation rate from 0 to 34%, the amount of IMEP and thermal efficiency decrease by about 18%. As the EGR increases, the start, middle, and end of the combustion are delayed due to the decrease in oxygen content inside the combustion chamber. With the increase of EGR, the temperature of the combustion chamber decreased so that increasing CO and UHC production, showing an increase of 86 and 300%, respectively, while NOx decreases by 350%.



Page 1 from 1