Search published articles


Showing 6 results for Exoskeleton Robot

Hassan Salarieh, , ,
Volume 13, Issue 5 (8-2013)
Abstract

Exoskeleton is a machine composed of a wearable anthropomorphic structure which noticeably magnifies user's might via its actuators. In this research, dynamic modeling and control system design for a lower limb type of this robot were done. In the literature at most a 1 DOF part of the robot is modeled and controlled which doesn't give a good insight on how all of the robot parts are controlled simultaneously. First, a suitable structure was chosen similar to that of UC Berkeley's BLEEX project. Then dynamic equations were derived in sagittal plane using the Newton-Euler method. By an experiment using Xsens system, gate kinematics data were measured and the inverse dynamics was simulated both in SimMechanics and on the model in MATLAB that proved accuracy of the derived model. Impedance control was investigated and some corrective remarks were included in that algorithm. Using this method the robot was controlled. It stabilized the system and the robot followed user's movement exactly. While a load of 50 kilograms was carried, mostly moments of less than 1 (Nm) were applied at each interface among man and robot.
, Hassan Salarieh, ,
Volume 13, Issue 7 (10-2013)
Abstract

Exoskeleton robot has attracted attention of many researchers because it realizes an old aspiration to attain a machine which is worn by man and maximizes his might via its powerful actuators. Thorough coordination between robot movements and that of user constitutes the greatest complexity of exoskeleton technology. Investigations showed that impedance control (IC) is suitable for this application but the present forms of IC are mostly dedicated to industrial robots which have significant differences with exoskeleton. In this article a versatile form of IC for the mentioned application is developed. Besides, according to perpetual uncertainties in load and measured force signals, for the first time an adaptive method for IC of exoskeleton robot is implemented. Simulating operation of robot in tracking user's walking motion while carrying a load of 50 (Kg) and with uncertainties in load and measured forces, proves efficiency of the proposed control method. Tracking error during simulation is almost zero and torques needed at interfaces are immaterial.
Kaveh Kamali, Ali Akbar Akbari, Alireza Akbarzadeh,
Volume 16, Issue 6 (8-2016)
Abstract

In this article, trajectory generation, control and hardware development of a knee exoskeleton robot is provided. The robot aims to help the individuals with lower extremity weakness or disability during the sit-to-stand movement. In the trajectory generation phase, a new method is proposed which uses a library of sample trajectories to predict the sit-to-stand movement trajectory based on the initial sitting conditions of the user. This method utilizes the theory of "dynamic movement primitives" to estimate the sit-to-stand trajectory. The trajectory generation method is tested on a library of human motion data which has been obtained in a laboratory of motion analysis. In the next step, an exponential sliding mode controller is used to guide the robot along the predicted trajectory. The controller and the trajectory generator are implemented on the exoskeleton robot. For the hardware development, the xPC Target toolbox of MATLAB software and a data acquisition card was used. Finally, the robot was tested on a male adult. The subjects were asked to wear the robot while doing several sit-to-stand movements from various sitting positions. According to the results, the average power which is required to be applied by the user’s knee, is less when the exoskeletons assists him.
Iman Kardan, Alireza Akbarzadeh,
Volume 17, Issue 9 (11-2017)
Abstract

Assistive exoskeletons are a category of wearable robots that provide a portion of the forces, required by users in performing different motions. Hence, the users will be able to perform the motions with less effort. Hitherto, different control algorithms for assistive exoskeletons are proposed and their various effects on the users’ performance are evaluated. Recently, the authors of the present paper have proposed a new control method, called output feedback assistive controller, for compliantly actuated exoskeletons. This method is independent from user’s intent, requires a very low number of sensors and possesses a simple model-free structure. This paper evaluates the effect of the output feedback assistive controller on the agility of the users. A knee physiotherapy robot is considered as a single joint exoskeleton. Connecting a series elastic actuator to the robot and implementing the output feedback assistive controller, the agility of the user is evaluated in a target following experiment. Two markers are displayed on a monitor to represent the actual and desired knee angles for the user. The user is asked to follow the desired angles by moving his/her leg. The accuracy of the user in following the target is measured and compared in two assisted and unassisted cases. The results clearly verify the positive effect of the output feedback assistive controller on increasing the user’s agility.
M. Mokhtari, M. Taghizadeh, M. Mazare,
Volume 19, Issue 3 (3-2019)
Abstract

External disturbances and internal uncertainties with an unknown range, as well as the connection between the human body and robot, are major problems in control and stability of exoskeleton robots. In order to deal with disturbances and uncertainties with the known range of the system, the sliding mode controller is used as a robust approach. The chattering phenomenon is one of the drawbacks of sliding mode controller, which boundary layer is employed to reduce the effects of this phenomenon. In this case, not only the chattering phenomenon is not completely eliminated, but the robust characteristics of the controller are mitigated. In this paper, in order to cope with the disturbances and uncertainties with unknown range, and guard against chattering as a key ingredient of excessive energy consumption and convergence rate reduction, optimal adaptive high-order super twisting sliding mode control has been applied. The dynamic model of a lower limb exoskeleton robot is extracted using the Lagrange method in which four actuators on the hip and knee joints of the left and right legs are considered. To achieve optimal performance, controller parameters are determined using Harmony Search algorithm by minimizing an objective function consisting of ITAE and control signal rate. The proposed controller performance is compared with optimal adaptive supper twisting sliding mode and optimal sliding mode controllers which shows the superiority of the optimal adaptive high-order sliding mode controller rather than other designed controllers.

Mona Sadat Ashrafi, Mostafa Nazari, Naserodin Sepehry, Masoud Mahdizadeh Rokhi, Parsa Samimi, Matin Attarchi,
Volume 22, Issue 8 (8-2022)
Abstract

The series elastic actuators make more comfort in the use of assistive exoskeletons. In this paper, an assistive controller is designed for a series-elastic-actuator-driven knee exoskeleton to restore normative mobility of individuals with weak muscles. The main target of the proposed controller is to modify the dynamics performance of the coupled human-exoskeleton system. In other words, the proposed controller modifies the relationship between the net muscle torque exerted by the human and the resulting angular motion. There are fewer sensors in the proposed intent-independent method relative to other methods. Moreover, there are less controller coefficients to regulate where these coefficients are extracted from a type zero Takagi-Sugeno-Kang fuzzy system. The performance of the controller is evaluated by simulations and experiments. The amplitude of the EMG signals decreased in a healthy person worn the SUT-KneeExo. Moreover, the proposed algorithm has a better performance in comparison with integral admittance shaping mothed and output feedback assistive controller. In other words, the amplitude of the integral admittance is more and the phase lag is less than other methods.


Page 1 from 1