Showing 6 results for Forming Force
Hossein Ghasemi, Behzad Soltani,
Volume 14, Issue 1 (4-2014)
Abstract
Single point incremental forming is a sheet metal forming process that has more flexibility than another methods. This process don't require to die and could formed various shape white use the simple tool and CNC machine. In this paper the influence of process parameters on the forces and dimensional accuracy and thickness distribution in single point incremental forming is investigated. These parameters include the feed rate, tool rotation, vertical step, movement strategy of tool and lubrication. Beginning with the design and construction of the fixture and clamping it on the dynamometer and create of tool (tungsten carbide), the preparation process was done on a CNC milling machine. Then, the experimental tests were carried out on Aluminum alloy sheets (Al-1200) with creation of pyramid frustum; after the measuring of force in different directions, the influence of parameters on the forming force was investigated. Also parts were measured with CMM devices and compared. The results showed that with increasing the feed rate, the vertical force decreases and with increasing tool rotation speed, horizontal force decreases. The use of lubricant, is effective on the improvement of process.
Mehdi Vahdaty, Ramezan Ali Mahdavinejad, Saeid Amini, Amir Abdullah, Karen Abrinia,
Volume 14, Issue 11 (2-2015)
Abstract
Incremental Sheet Metal Forming (ISMF) is based on localized plastic deformation. In this process, a hemispherical-head tool, controlled by a CNC milling machine, shapes a sheet metal according to a defined path. Study of the forming force is one of the most important topics in this process. Increasing of vertical step size, tool diameter, wall angle and sheet thickness together with using of high strength sheet metals and lightweight alloys, leads to an increase in the forming force. In this paper, the performance of a novel forming process, named Ultrasonic Vibration assisted Incremental Sheet Metal Forming (UVaISMF) has been investigated. The procedure of design, manufacture and test of vibratory forming tool, is presented. The occurrence of longitudinal mode and resonance phenomenon has been confirmed by the results of modal analysis and experimental test. Furthermore, the effect of ultrasonic vibration on the vertical component of forming force and spring-back has been studied. Aluminium sheet of grade Al 1050-O is used as a work material. Experimental results obtained from straight groove test, indicate that ultrasonic excitation of forming tool, will reduce the average of vertical component of forming force and spring-back in comparison to conventional process.
Abbas Pak, Hamed Deilami Azodi, Mehdi Mahmoudi,
Volume 14, Issue 11 (2-2015)
Abstract
Incremental sheet metal forming process is considered as one of methods which able manufacturer to produce parts without dedicated die in low and rapid prototype production, and many researches have been done to improve it. Using of ultrasonic vibration is one of the modern approaches in forming processes which reduce friction and forming force. The purpose of this study is to investigate the effect of ultrasonic vibration applied to the tool in single point incremental sheet metal forming process. For this, first theory of single point incremental forming has been studied; its principle has been investigated and analytical relations have been modified then analytical relations in the case of applying ultrasonic are derived from those. To practical evaluation of applying ultrasonic to this process a set can be installed to the head of CNC milling machine is designed and manufactured. According to results of analytic compared to experimental results a reasonable approximation of forming force variation in normal single point incremental forming process and applying ultrasonic can be offered. Based on tests results forming force in applying ultrasonic compare to normal mode reduces between 33 to 63.5 percent depend on test circumstances.
Mohammad Ali Rasouli, Aboozar Taherizadeh, Mahmood Farzin, Amir Abdolah, Mohammad Reza Niroomand,
Volume 16, Issue 12 (2-2017)
Abstract
Tube spinning or flow forming process is used for manufacturing of seamless tubes widely put into service in advanced industries. The ideal flow for materials entering the deformation zone in this process is extrusion-type flow in axial direction. Very localized deformation zone which is confined by outer materials and forming tools is very important aspect of this process. Therefore, development of defects during the deformation process with undesirable flow of materials can be easily occurred. The main reason of undesirable flow of materials is choosing inappropriate process parameters which results in arising various geometrical and dimensional defects. In this paper, the effects of process parameters on formation and growth of different defects and their correlations with material flow and forming forces in tube spinning of AA6061 was investigated by using design of experiment (DOE) method. The results of experiments show that by applying the optimized values of reduction and feed rate per revolution, these defects can be controlled. Also, by comparing the experimentally measured and theoretically calculated forming forces it can be shown that the larger the deviation of measured forces from calculated ones gets the more severe formation of defects and undesirable materials flow becomes.
A. Abdollahi Taheri, S. Golabi,
Volume 20, Issue 6 (6-2020)
Abstract
In recent years, industrial applications of composite sheets have been increasingly expanded due to their extremely different properties such as high strength, low density, and good corrosion resistance compared to single layer sheets. For this reason, in the current study, it is investigated the flanging of composite metal sheets. Also, the behavior of an aluminum-copper sheet, cladded using explosive welding, during incremental forming of a circular collar have been experimentally and numerically studied. In addition, the experimental results are used to validate the numerical simulation of the forming process. At first, in order to understand collar forming of the perforated sheet, the effect of hole diameter, forming direction or layer arrangement on dimensional accuracy, thickness distribution and forming force were investigated and then, the effect of hole flanging and collar forming were compared using two strategies. The results show that by decreasing the initial hole diameter of sheet, the average vertical maximum force increases by 9%, the minimum thickness decreases and its location shifts toward the center of sheet. Aluminum-copper arrangement also experiences a 7% reduction in average force and a 4% increase in minimum thickness due to the protective property of copper layer in tensile state compares to copper-aluminum. Besides, the multi-step method leads to a 6% minimum thickness increase due to better material flow compared to single-step method.
Hamid Reza Ghahreman, Mohammad Honarpisheh, Mohammad Bagher Sarafrazi,
Volume 22, Issue 5 (4-2022)
Abstract
One of the forming pipes methods is the rotary draw bending process. Today, bending of thin-walled pipes with low radius of curvature is widely used in the automotive, military and aerospace industries, which is used to bend high-strength pipes. In this paper, at first the necessary models were created to simulate the bending process of the rotary pipe, and then the necessary mechanical and physical properties for stainless steel 304 and elastomers were determined. Then, experimental and numerical study of the forming force and changes in pipe wall thickness were performed. The process simulation was analytically performed using polyurethane elastomeric mandrels and nitrile rubber based on ABAQUS finite element software on 304 steel. The results show a good agreement between simulation and experimental results. Finally, the effects of process parameters including mandrel type, pipe diameter and bending radius were analyzed on the maximum forming force by factorial analysis. The results showed that the maximum forming force for both types of mandrel materials is obtained for pipes with small diameter and high curvature radius. Also, the bending forces increase 5 times by 30%increasing the bending radius, for pipes with smaller diameters. In addition, in equal diameter and radius of bending, the bending forces in the case of using polyurethane mandrel are 25% more than nitrile mandrel.