Search published articles


Showing 17 results for Functionally Graded Materials

Mehrdad Jabbarzadeh, , Mahmood Khosravi,
Volume 12, Issue 5 (1-2013)
Abstract

In this paper, the thermal buckling behavior of circular plates with variable thicknesses made of bimorph functionally graded materials, under uniform thermal loading circumstances, considering the first-order shear deformation plate theory and also assumptions of von Karman has been studied. The material characteristics are symmetric to the middle surface of the plate and, based on the power law, vary along with thickness; where the middle surface is intended pure metal, and the sides are pure ceramic. In order to determine the distribution of pre-buckling force in the radial direction, the membrane equation is solved using the shooting method. And the stability equations are solved numerically, with the help of pseudo-spectral method by choosing Chebyshev functions as basic functions. The numerical results in clamped and simply supported boundary conditions and the linear and parabolic thickness variations are presented. And the influence of various parameters like volume fraction index, the thickness profile and side ratio on the buckling behavior of these plates has been evaluated.
Mostafa Ahmadi Nokhandan, Mehrdad Jabbarzadeh,
Volume 14, Issue 1 (4-2014)
Abstract

This paper presents the first and third order shear deformation plate theory and von Karman theories to solve Thermo-elastic problems of functionally graded hollow rotating disk. The material properties of the disk are assumed to be graded in the direction of the thickness by a power law distribution of volume fractions of the constituents. New set of equilibrium equations with small and large deflections are developed. Using small deflection theory an exact solution for displacement field is given. Solutions are obtained in series form in case of large deflection. Numerical results are presented for various percentages of ceramic-metal volume fractions and have been compared with those obtained using first-and third-order shear deformation plate theories. Also the results are verified with ABAQUS soft, simulink method and the known data in the literature.
Mohammad Zamani Nejad, Abbas Rastgoo, Amin Hadi,
Volume 14, Issue 8 (11-2014)
Abstract

This paper presents an elastic parametric analysis for the purpose of investigating the limit angular speed, displacement and stresses in rotating disks made of functionally graded materials (FGMs) based on Tresca yield criterion. The material properties obey the power law in radial direction. The Poisson’s ratio due to slight variations in engineering materials is assumed constant. For different values of inhomogeneity constant, limit angular speed, displacement and stresses in radial direction are plotted and for the commencement of the plastic flow, different states are investigated. state1: onset of plastic flow at the inner radius, state2: onset of plastic flow at the outer radius, state3: onset of plastic flow as the simultaneously at both radii and state4: onset of plastic flow between the inner and outer radii. To the best of the researchers’ knowledge, so far, in the papers which have been dealing with the investigation of onset yield analysis, the density and yield stress has been assumed constant; however, in this paper by assuming varying density and yield stress in rotating disks made of functionally graded materials and comparing results obtained by fixing these parameters, it has been observed that taking the density as a constant value is wrong and varying it has significant effects on the stresses.
Mehran Kadkhodayan, Hassan Zafarmand,
Volume 14, Issue 11 (2-2015)
Abstract

In this paper the three dimensional dynamic analysis and stress wave propagation in thick functionally graded plate subjected to impact loading is studied. Material properties (elasticity modulus and density) are assumed to vary continuously through the thickness direction of the plate according to a simple power law distributions and the Poisson’s ratio is assumed to be constant. The equations of motion are based on three dimensional theory of elasticity. The three dimensional Graded Finite Element Method (GFEM) based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in time and space domains. It is assumed that in dynamic loading the upper surface of the plate is subjected to a pressure load that varies linearly with time, and suddenly is unloaded at a specified time. This unloading acts as an impact loading. Afterward, the time histories of displacement through the thickness, stresses in three dimensions and velocity of stress wave propagation for different values of power law exponents, various boundary conditions and thickness to length ratios have been investigated. The obtained results are in agreement with available data in literature.
Farid Vakil-Tahami, Mohammad Zehsaz, Arash Mohammad Alizadeh Fard,
Volume 14, Issue 12 (3-2015)
Abstract

In this paper the creep behavior of a functionally graded (FG) rotating disc made of Aluminum 6061 and Silicon Carbide is investigated and the optimum volume fraction of FG disc and its profile has been obtained. For this purpose, the temperature gradiant along the disc radius is obtained by solving the govering heat transfer differential equation. All the thermal properties of the material are assumed to be the function of temperature and volume fraction. To obtain material properties, two models of Mori-Tanaka and Hashin-Schtrickman are used. To validate the results, they are compared with those given in the literature. Two solution methods: semi-analytical and closed form are employed and the results are compared. The optimum design is carried out with one, and multi-objective methods which are based on genetic algorithm. The objectives are increasing the factor of safety, reducing the weight of the disc and reducing the range between minimum and maximum safety factors. The design variables are percentage of volume fraction, the power of material distribution formula, and the thickness of the disc. The results show that two solution methods compare well. Also, it has been shown that high fraction of Silicon Carbide in the outer side the disc provide optimum results. Also, contradiction of the objectives is reviled, hence the results are presented as Pareto front.
Rahmatollah Ghajar, Safa Peyman, Ali Shaghaghi,
Volume 14, Issue 14 (3-2015)
Abstract

To investigate, understanding and predicting dynamic fracture behavior of a cracked body, dynamic stress intensity factors (DSIFs) are important parameters. In the present work interaction integral method is presented to compute static and dynamic stress intensity factors for three-dimensional cracks contained in the functionally graded materials (FGMs), and is implemented in conjunction with the finite element method (FEM). By a suitable definition of the auxiliary fields, the interaction integral method which is not related to derivatives of material properties can be obtained. For the sake of comparison, center, edge and elliptical cracks in homogeneous and functionally graded materials under static and dynamic loading are considered. Then material gradation is introduced in an exponential form in the two directions in and normal to the crack plane. Then the influence of the graded modulus of elasticity on static and dynamic stress intensity factors is investigated. It has been shown that, material gradation has considerable reduce influence on DSIFs of functionally graded material in comparison with homogenous material. While, static stress intensity factors can decrease or increase, depend on the direction of gradation material property.
Fatemeh Farhatnia, Mahsa Ghanbari,
Volume 15, Issue 1 (3-2015)
Abstract

This study deals with thermo-elasto-plastic behaviour of functionally graded thick-walled cylinder that is exposed to internal pressure and temperature gradient. For this purpose, Von-Mises yield criterion and Prandtl-Reuss flow-rule under state of plane strain are utilized. The modulus of elasticity, the thermal conductivity and thermal expansion coefficients are assumed to obey the power function in the radial position according to Erdogan’s model. In this work, the presented approach leads to the definition of new formulation to determine the elastic limit pressure and predict the onset radius of yielding, spread and growth of plastic zone. The governing equilibrium equation of cylindrical shell in axi-symmetrical status is solved in order to determine the distribution of radial, circumferential stresses and radial displacement. Various examples are handled to investigate the effect of FG-power law parameters on the yield pattern and distribution of plastic zone. The distribution of radial displacement, radial and circumferential stresses are expressed as the functions of radial position. The numerical results show that by the appropriate choice of the FG parameters and the specified thermal gradient, the plastic zone can commence simultaneously from inside and outside or intermediate radius.
Farid Vakil-Tahami, Reza Hassan Nejhad, Arash Mohammad Alizadeh Fard, Morteza Raminnia,
Volume 15, Issue 8 (10-2015)
Abstract

In this paper a method has been developed to obtain an optimum material distribution for a cylindrical shell with Functionally Graded (FG) material and additional piezoelectric outer layer. The objective of the optimization is to satisfy full stress loading criterion. For this purpose; firstly, a solution method has been outlined in which, the governing equations are developrd by combining First order Shear Deformation Theory (FSDT) and Maxwell equations, with the use of Hamilton principle. Dynamic analysis is a major concern in this solution method because of the significant dynamic displacements, strains and stresses due to the effect of moving load. Hence, the time dependent transient responses of the structure and stress distribution have been obtained. At the next stage, a methodology has been introduced to obtain the optimum material distribution. In this method, instead of using pre-assumed material distribution functions which impose limitations to the manufacturing of the shell and also to the optimization solution, control points with Hermite functions are used. The thickness of the shell and volume fraction of the FG material at these points have been regarded as optimization variables. The optimization method is based on the genetic algorithm and to reduce the solution time, calculations are carried out using parallel processing in four cores. The results show that the developed method is capable of analyzing the FG structures and provide optimum solution. The major advantage of this method is its flexibility in providing volume fraction distribution of the material.
Safa Peyman, Rahmatollah Ghajar,
Volume 15, Issue 9 (11-2015)
Abstract

This paper concerns the effect of auxiliary fields and distance of contours from the crack tip on the accuracy of stress intensity factors of Functionally Graded Materials (FGMs), using the interaction integral method. In the first step, defining auxiliary fields of displacement, strain, and stress appropriately, the interaction integral is derived which is independent of derivatives of properties of the materials. Actual and auxiliary fields of displacement, strain and stress are used to compute the interaction integral. Actual fields are obtained by isoparametric finite element method, while auxiliary fields are constructed by use of the crack tip properties on the basis of William’s solution. These auxiliary fields are not appropriate, except near the crack tip. Therefore, different non-equilibrium and incompatibility formulations are used to consider the changes in non-homogeneous material. Considering the changes in FGMs as an exponential function, the results will be obtained from these formulations and are compared with others recorded in the literature. Furthermore, considering different contours, the effect of distance of contours from the crack tip on the stress intensity factors of FGMs is examined. The results confirm that the solutions using the incompatibility and constant constitutive tensor are more accurate. In contrast the non-equilibrium method is not proper for contours which are placed far away from the crack tip and presents less accuracy.
Yavar Anani, Gholam Hossein Rahimi,
Volume 15, Issue 11 (1-2016)
Abstract

In this paper, behavior of functionally graded rubbers with large deformation has been modeled under different loading conditions. Rubbers have been assumed incompressible hyperelastic material. In the first section of this paper, behavior of isotropic FG rubber has been investigated in uniaxial extension, equibiaxial extension and pure shear. In the second section, behavior of isotropic FG rubber is investigated in mechanical and thermal loads, simultaneously. For this purpose, multiplicative decomposition of deformation gradient tensor has been used. At last, behavior of transversely isotropic FG rubber has been investigated in uniaxial extension, equibiaxial extension and pure shear. Material properties vary continuously in different specific direction in FG hyperelastic materials. For modeling nonlinear behavior of hyperelastic materials, strain energy functions are used. Strain energy functions are function of invariants of left Cauchy-Green stretch tensor. Modification in strain energy functions required in order to use them for FG rubbers. For this purpose, material constants of strain energy functions have been assumed to vary exponentially in the axial direction of bar. Moreover, stretches in different points of the bar are considered to be function of material properties variation in the length direction. Analytical solution have been compared with experimental data and good agreement has been found between them, therefore proposed constitutive law has been modeled material behavior with a proper approximation.
Rahmatollah Ghajar, Mohammad Reza Varavi, Safa Peyman,
Volume 16, Issue 3 (5-2016)
Abstract

Static and dynamic stress intensity factors are important parameters in the fracture behavior of the cracked bodies. In the present study the displacement correlation technique (DCT) is presented to calculate static and dynamic stress intensity factors of functionally graded materials (FGMs). The displacement field is obtained using finite element method (FEM) and ABAQUS software. To consider the variation of material properties, a subroutine is prepared in the UMAT subroutine of the software. Eight-node singularity elements are used in the FEM. As ABAQUS software is not able to calculate stress intensity factors of FGMs, so a MATLAB code is developed to obtain these factors. By analyzing an example under dynamic load, dynamic fracture behavior of orthotropic FGMs and effect of non-homogeneity parameter are investigated for two cases of material properties variation directions which are perpendicular to each other. To verify presented method, a center crack in a plate of homogeneous and FGM materials are analyzed under static and dynamic loads, the results are compared with data of literatures. The results show that, if the material properties vary parallel to the crack direction, the mode I dynamic stress intensity factor at the crack tip located in the stiffer part increases with increasing of non-homogeneity parameter, while for variation in the normal direction to the crack, this factor first increases and then decreases.
Ahmad Ghasemi-Ghalebahman, Mohammad Moradi-Golestani,
Volume 16, Issue 6 (8-2016)
Abstract

In this paper, a new inverse method has been presented for identifying the distribution of material properties and volume fraction index of rectangular functionally graded (FG) material plates. This method benefits from vibration analysis of FG plates accompanied by a novel and efficient meta-heuristic optimization algorithm called Drops Contact Optimization (DCO) algorithm, being proposed for the first time in this article. The presented algorithm relies on the initial population and mimics the behavior of water drops in different level of contacting successively with a fluid surface. Through using the second shear deformation theory and applying the Hamilton principle, the motion equations are derived and, subsequently, the natural frequencies of the considered FG plates are obtained. The outcomes relevant to considered different material phases and various length to thickness ratios are achieved and compared with those available in the literature. Making a comparative study of the obtained results with five well-known optimization algorithms confirms that the proposed DCO algorithm produces better performance in convergent speed and accurate characterization of FG materials.
Farid Vakil-Tahami, Mohammad Reza Khoshravan, Arash Moahammad Alizadeh Fard,
Volume 16, Issue 9 (11-2016)
Abstract

The main objective of this research is to employ Imperialist Competitive Algorithm (ICA) to determine the optimum condition for an FG cylindrical shell with outer piezoelectric layer. Design parameters in this problem are thickness and volume fraction of the material. The shell is subjected to outer radial moving load and internal pressurized fluid. To formulate the problem, First Order Shear Deformation theory and Maxwell’s equation have been combined to develop governing equations and by solving these equations using analytical-numerical methods, the dynamic deformation has been obtained. Then, by adopting displacement-strain and stress-strain relationships, distribution of the dynamic stresses within the shell has been calculated. Due to the moving of the external load, the use of dynamic analysis is necessary so that the dynamic and transient response is significant comparing with the static one. To validate the dynamic analysis, the results are compared with those provided in the literature based on other solution methods or experimental measurements. Finally, a computer code has been developed to link the dynamic solution method with the optimization algorithm based on ICA to obtain the optimum values of the design parameters. The major advantage of this method is using control points along the thickness to define volume fraction rather than using predefined functions which usually impose unnecessary restriction. The volume fraction between these control points is obtained by Hermite interpolation method. The results show the efficiency of the method and its major strength which is the flexibility and higher convergence rate to determine the optimum configuration.
Vahid Rezaei, Ali Mohammad Shafei,
Volume 17, Issue 12 (2-2018)
Abstract

In this article, the dynamic equations of multiple flexible links robotic manipulators fabricated of functionally graded materials (FGM), whose properties vary continuously along the axial direction and also along the thickness, are examined. Gibbs-Appell methodology and Timoshenko Beam Theory according to the Assumed Mode Method are utilized to obtain the equations of motion and to model the flexible characteristics of links, respectively. Subsequently, the influence of power law index on the vibration response of a two-link functionally graded robotic manipulator is studied for two cases in which the mechanical properties of links vary once along the axial direction and again along the thickness direction of each link. By introducing a parameter called signal energy, it is shown that the power law index has a substantial effect on the vibrational behaviors of the mentioned system; and that by choosing a proper power law index, system vibrations can be reduced considerably in a passive way.
B. Saeedi, R. Vatankhah,
Volume 19, Issue 6 (6-2019)
Abstract

In this article, the sensitivity and resonant frequency of the atomic force microscope made of functionally graded materials is investigated by couple stress theory (MCST). In MCST, the size effect of the system is taking into account by means of the material length scale parameter. is made of a mixture of metal and ceramic with properties varying through the thickness following a simple In this work, due to the kinematic energy and potential energy of , the governing equations of motion and corresponding boundary conditions are derived on the basis of Hamilton principle by considering Euler-Bernoulli beam theory. Based on the results, it is clear that when the contact stiffness increases, the sensitivity of the system decreases, and resonant frequency increases. Moreover, when the thickness comes approximately close to material length scale parameter, the difference between MCST and classical continuum mechanic becomes significant. Furthermore, in low contact stiffness, increasing the power reduces the sensitivity of , while in high contact stiffness, increasing the power  increases the sensitivity of the system. Results also show that at each value of contact stiffness, as ceramic volume fraction increases the resonant frequency will be increased, too.
 

B. Shahriari, A. Karimian, M.r. Nazari,
Volume 19, Issue 9 (9-2019)
Abstract

The present study is an attempt to analyze the yield threshold in a rotating variable-thickness disk made of functionally graded material (FGM) based on the Tresca yield criterion. The analysis was performed based on the small deformation theory and for the plane stress state. The modulus of elasticity, density and yield stress were assumed to be a power function of the radial coordinate. The Poisson’s ratio due to slight variations in engineering materials is assumed constant, and the equilibrium equation governing the rotating disk was solved analytically. In addition to the type of material, the disk cross section profile can affect the distribution of stress fields. The thickness of the disk cross-section varies in the radial direction by a power function. In the present analysis, various states are considered for onset yield and commencement of plastic flow. For evaluation and validation, the results of the study are compared to similar results related to specific states (homogeneous and functionally graded constant-thickness disk) investigated in previous references. The results show that considering variable thickness for disk section has a significant effect on the stress level and the prediction of onset yield point.
 


Volume 20, Issue 2 (5-2020)
Abstract

Structural health monitoring is essential to predict problems and maintain structure integrity which can be effective in prolonging the structure lifetime. The accumulation of failure in the structures causes a severe structural fracture; therefore, the development of damage detection methods for structural fracture is one of the most important points in maintaining the integrity and safety of the structures. In this paper, damage identification in functionally graded (FG) porous circular plates based on modal data and vibration analysis on elastic foundation is carried out. The vibration analysis process is performed based on first-order shear deformation theory and analytical method. Circular plates are widely used in the industry, for example in bower, balconies, screens, halls and swimming pool ceilings. Functionally graded materials are a new type of composite materials and may be characterized by the variation in composition and structure gradually over volume, resulting in desired changes in the characteristics of the material. The porous materials are lightweight, flexible and resistant to tiny cracks, these materials have two phases; their first phase is solid and the second phase is liquid or gas. The proposed method is achieved using modal analysis information extracted from a mathematical code in MAPLE. Based on this method, the plate can be examined with different boundary conditions including clamped, free and simply supported. Power series method has been used to solve the governing equations of circular plate. For the first part of the circular plate, the power series expands around the zero point and for other parts of the plate, the power series expands around the outer radius of its own part. In this study, first of all, the governing equations of circular plates were extracted based on first-order shear deformation theory and displacement functions. Two types of porosity have been used for applying porosity to the plate. Thereafter, the continuity conditions of displacement which generally include 6 items have been applied: continuity of in-plane displacement of the middle layer, continuity of rotation of the transverse surface, continuity of displacement of the plate, continuity of in-plane force, continuity of bending torque and continuity of transverse shear force per unit length. Furthermore, stress resultants in the points of connection have been applied which includes 3 items: in-plane force, bending torque and transverse shear force per unit length. The matrix determinant that is based on boundary and continuity conditions has been calculated to find the natural frequencies of the plate. After that, based on the Newton-Raphson method which is a numerical method for determining the root of a function, the initial natural frequencies of the circular plate were obtained and their modal shapes were plotted. At the end of the process, when the natural frequencies are determined, the unknowns were calculated. To prove the accuracy and efficiency of the proposed method, the natural frequencies obtained from this method were compared with the results presented in other papers. The comparisons have shown that the results obtained through this study had a good agreement with those of other ones and the proposed method could accurately show the damage location.


Page 1 from 1