Search published articles


Showing 2 results for Gas Diffusion Layer

Hassan Hassanzadeh, Amin Ferdowsara, Mahboba Barzagary,
Volume 14, Issue 2 (5-2014)
Abstract

In the PEM fuel cells, gas phase (air and vapour) and liquid water could simultaneously flow through the cathode Gas Diffusion Layer (GDL). On the other hand, the performance of fuel cell and the main characteristic parameters of the flow can be influenced by the interaction of these gas and liquid phases. In the present study, the main parameters of two-phase flow in the GDL such as capillary pressure, mole concentrations of gas species, gas velocity and liquid velocity have been evaluated by considering the interactional effects of the aforementioned two phases. Also, the impact of changing the value of cathode channel humidity and fuel cell temperature on the value of the mentioned parameters has been investigated. The results indicated that decreasing of relative humidity in the cathode channel causes an increase in the rate of water vaporization. Thus, this leads to a decrease in the liquid water velocity, capillary pressure gradient and saturation gradient in the GDL. Also, increasing the temperature causes an increase in the rate of water vaporization and a decrease in the gas velocity and gas pressure gradient.
Mohammad Habibolahi, Hassan Hassanzadeh, Mohhammad Rahnama, Seyed Ali Mirbozorgi, Null Null,
Volume 18, Issue 9 (12-2018)
Abstract

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) has been widely used in recent decades due to operating at low temperature with high energy density. Water management is one of the main challenges for the development and commercialization of PEMFCs, which has a significant impact on their performance. The behavior of liquid water in the PEMFCs is very important. In this study a pore scale model is used to investigate liquid water transport in the gas diffusion layer (GDL) of PEMFCs. The GDL layer generated by randomly placing circular solid particles. The pseudo-potential lattice Boltzmann (LB) proposed by shan and chen is used to simulate two phase flow. The code was validated in three modes and is verified correctly then, the effect of three pore size particles, porosity coefficient and hydrophobicity of the GDL on the water transfer has been investigated. The results show that, over time, the amount of saturation in the GDL increases and ultimately reaches a constant value. In addition to by reducing the diameter of the particles, the amount of saturation and the number of breakthrough sites decreased, which increases the oxygen penetration.Also, the amount of local water saturation in the catalyst layer (CL) interface and the GDL tends toward one, indicating that oxygen molecules in these regions should be dissolved in water and then fed to the CL. In addition to, the amount of liquid water inside the porous layer decreases with increasing hydrophobicity

Page 1 from 1