Search published articles
Showing 1 results for Green Density
M. Sayah Badkhor , T. Mirzababaie Mostofi , H. Babaei,
Volume 20, Issue 4 (4-2020)
Abstract
Manufacturing products using powder compaction is one of the most widely used methods in the industry. In this paper, dynamic compaction of aluminum powder under low-velocity impact loading was investigated using a drop hammer testing machine along with the optimization of effective parameters in this process. In this series of experiments, the green density and green strength of compacted products were measured. The response surface methodology was used to study the influential parameters in the powder compaction process. In this method, the effects of independent parameters including the grain particle size, the hammer mass, and the standoff distance of the hammer on the green density and green strength were evaluated. In the current study, two separate analyses were performed for each output response and the obtained results were summarized in ANOVA tables. The results showed that the p-value for the model is less than 0.05, which means that the model is significant. The values of R2 for the green density and green strength are equal to 0.9956 and 0.9912, respectively. The results of the optimization section indicate that the optimum case, the maximum green density as well as green strength at the same time, occurs when the grain particle size, the hammer mass and the standoff distance of the hammer have the maximum values. The factors o standoff distance of hammer and grain particle size have the highest and least effect on responses.