Search published articles


Showing 2 results for Hardfacing


Volume 7, Issue 2 (9-2007)
Abstract

Thermal fatigue (heat checking), mechanical fatigue, wear and plastic deformation of critical areas of hot forging dies at working temperatures are the main mechanisms that reduce their lifetime. During forging processes the surfaces of the dies reach temperatures of 700-800 ºC. Therefore, hardfacing of these areas with nonferrous elevated temperature hardfacing alloys such as Stellite 6 can improve the performance and lifetime of the dies, many times. Hot hardness, galling resistance, hot corrosion and oxidation resistance, adhesive wear resistance, low friction coefficient and absence of allotropic transformation up to 1100 ºC are the most important properties of Stellite 6. H11 tool steel is widely used as hot forging die material. This steel because of its high alloy contents and, therefore, its hardenability is very sensitive to high cooling rates involved during welding cycles and hydrogen induced cracking (HIC). For this reason, in this research hardfacing parameters of H11 tool steel with Stellite 6 in TIG welding method have been investigated. According to the results, hardfacing of this steel in annealed hardfaced condition isn't feasible and it is recommended that preheating and intermediate temperatures during the hardfacing cycle between 310-370 ºC. The suitable current for TIG hardfacing of this steel by φ3.2mm filler rod was determined to be 80-85 amperes for the first layer and 90-100 amperes for upper layers. The minimum thickness for obtaining maximum hardness in the hardfacing layer (41-42 HRC) under these conditions was determined to be 3mm. It is recommended that the effective heat input for hardfacing of this steel under three-body heat transfer conditions would be less than 455kJ/m. It is also recommended that the Δt8→5 of H11 tool steel hardfacing cycle would be in the range 6 to 15.3s. Finally it is recommended that H11 hardfaced tool steel would be stress relived in the range 425 -500 ºC for 1 hour per 30mm base metal thickness.
Majid Mohamadi Ziarani, Nasrallah Bani Mostafa Arab, Hassan Jafari,
Volume 15, Issue 12 (2-2016)
Abstract

Engineering components during service are exposed to destructive phenomena such as wear which may lead to their destruction. For their protection and reduction of costs of replacement of these defective components and also increasing productivity, attention is given to welding processes for depositing a wear-resistant layer on the components. In this research, the effect of welding current on last layer weld quality deposited on carbon steel by shielded metal arc welding process using Fe-based hardfacing electrodes is investigated. The chemical composition of the weld deposit layers was studied by quantometery. Optical and scanning electron microscopes, energy dispersive X-ray fluorescence and X-ray diffraction were used for microstructural studies. Microhardness and pin on disk wear tests were also employed for microhardness and wear resistance evaluations. The metallography and X-ray diffraction results show presence of martensite and retained austenite in the microstructure of the last deposited weld layer. The results of chemical analysis and microhardness and wear-resistant tests show that increasing the current increases weld dilution which leads to reduction of alloying elements affecting hardness and wear resistance of the weld deposit and hence these properties decrease slightly. Evaluation of the worn surfaces shows that the wear mechanism on the last deposited layer is of abrasive wear type.

Page 1 from 1