Search published articles


Showing 6 results for Horizontal Axis Wind Turbine

Mohammad Hossein Giahi, Ali Jafarian Dehkordi,
Volume 15, Issue 5 (7-2015)
Abstract

In the recent years, wind energy had a faster growth compared with the other renewable energies. The interaction between fluid and structure becomes more important as the wind turbine size and its power production capacity increases. In the present research, the effect of wind speed and blade materials on static deformation of a small size horizontal axis wind turbine blade has investigated. The shaft torque and root flap bending moment values obtained from simulation are in a good agreement with experimental data. Results demonstrated that the deformation of the blade increases as the wind speed grows although the increase rate has declined in the mean wind speed range because of the occurrence of separation phenomenon on the blade surface. The effect of blade components materials on blade deformation was investigated and the least deformed configurations were introduced. The thickness of the designated blade components has been investigated by means of the maximum strain theory. The final thickness of the skin, spur and root was estimated by 2.1 mm, 2.8 mm and 10 mm respectively which are 30% less than the primary one.
Saeed Fadaei Naeini, Abbas Mazidi,
Volume 16, Issue 6 (8-2016)
Abstract

In this paper, equations of motion for a horizontal axis wind turbine with movable base are extracted and natural frequencies and vibration of the system is studied. The wind turbine tower is assumed rigid while its blades are modeled as flexible beams. In-plane bending and twisting are considered as two degrees of freedom for blades motion.The shaft connected the tower to blades is assumed rigid and its rotational velocity is considered.In this paper, specifically, a 5-megawattfloating horizontal axis wind turbine, which it’s basehas three angular velocities in different directions,is studied.Due to the complex shape and variation of the properties along the length, the turbine blade properties such as mass and geometric parameters are extracted by curve fitting in MATLAB.The equations of motion and boundary conditions are derived by Hamilton's principle and then are transformed to ordinary differential equations by Galerkin method. By setting the governing equations to standard form (space state), eigenvalues and frequencies are calculated. The numerical results are compared with published results and good agreement is observed.Then the effect of various parameters on turbine blades frequencies and time responses are demonstrated. Results show that the tower base angular velocity and blades rotational speed have considerable effects on turbine blades time response and vibration frequencies.
Amir Nejat, Hamid Reza Kaviani,
Volume 16, Issue 11 (1-2017)
Abstract

This paper presents a fast and efficient aerodynamic optimization method for megawatt class wind turbines. For this purpose WP_Baseline 1.5 MW wind turbine is used as a test case. Modified particle swarm optimization (PSO) algorithm is used in this study. PSO parameteric studies are conducted, to increase both efficiency and speed of optimization cycle. Since in aerodynamic optimization, it is very desirable to limit the number of the variables, in this study geometric 'class function/shape function' transformation technique (CST) is used for blade geometry parameterization and the appropriate order of shape function polynomial is proposed for S818, S825 and S826 airfoils. Improved Blade Element Momentum (IBEM) theory is implemented for wind turbine power output estimation, validated with experimental and Computational Fluid Dynamic (CFD) data of AOC wind turbine. The aerodynamic data needed for IBEM is provided by XFoil software. XFoil output data for pressure coefficient and wall shear stress which are validated against experimental and CFD data, are applied as the aerodynamic input data for IBEM method.
The twist, the chord and 3 types of airfoil for all sections of the turbine blade are optimized using IBEM method. Optimization is performed with realistic constraints to produce feasible geometry. The performance of the final optimized geometry is simulated via 3D steady incompressible Navier–Stokes equations coupled with Transition SST Model CFD simulation to predict the performance improvement. The results show about 4 percent power enhancement for WP_Baseline wind turbine.
Abbas Ebrahimi, Mohammadreza Movahedi,
Volume 16, Issue 12 (2-2017)
Abstract

In this paper, boundary layer control technique is investigated on the NREL-5MW offshore baseline wind turbine blade with numerical simulation of linear DBD plasma actuator in a three-dimensional manner. This wind turbine uses pitch control system to adjust its generated power above its rated speed; but below that the controller is not in function. In the current study, operating condition is set such that the control system is off. Plasma actuator consists of two electrode and dielectric material. One of these electrodes is connected with the air and the other one is encapsulated with the dielectric material. When the necessary high-level AC voltage is applied to electrodes, electric field forms around the actuator and an induced wall jet forms with the ionization of the air around the actuator. Electrostatic model is applied to simulate the effects of plasma actuator and the resulted body force is inserted into flow momentum equations. In the present study, three different control cases are studied. Results show that in all cases, using this actuator leads to improvement of the velocity profile in controlled section, which influences on pressure distribution and results in rotor torque increment. Finally, increasing in torque leads to grows in produced power of the wind turbine. The most increment in output power occurs, when the actuator installed near the root of the blade in the spanwise direction and before low-speed region in the chordwise direction.
Abbas Ebrahimi, Mostafa Nozari,
Volume 18, Issue 6 (10-2018)
Abstract

In this paper, the axisymmetric actuator disk method (2D) with acceptable accuracy and low computational cost based on computational fluid dynamics have been adopted to study the flow behavior around the horizontal wind turbine rotor and the wake. For this sake, a C code is developed as a self-developed user-defined function (UDF) in commercial software package ANSYS FLUENT. The rotor is modeled as a virtual disc and its effect is added to the Navier-Stokes equations as a sink term. The results obtained for the 5 MW NREL wind turbine in this study show the appropriate accuracy and speed-up. The interaction of two wind turbines in the wind farm has been investigated. The results depict that the output power and thrust of the downstream rotor due to the presence of an upstream turbine drop up to 88% and 57%, respectively. Also, radial distribution of the downstream rotor power shows that at a closer distance, the middle part of the blade has a larger contribution to power generation. Further, the effect of downstream rotor on the upstream rotor performance is up to 1.5% and 0.7% reduction in power and thrust respectively.
Seyyed Mohammad Sajad Seifi, Mohammad Mojaddam, Pouyan Hashemi Tari,
Volume 18, Issue 9 (12-2018)
Abstract

Aerodynamic and optimal design of a blade of a horizontal axis wind turbine (HAWT) has been performed in order to extract maximum power output with considering the strength of the blade structure resulted from different loads and moments. A design procedure is developed based on the Blade Element Momentum (BEM) theory and suitable correction factors are implemented to include three-dimensionality effects on the turbine performance. The design process has been modified to achieve the maximum power by searching an optimal chord distribution along the blade. Based on the aerodynamic design, the blade loads have been extracted and the blade mechanical strength has been investigated by analyzing the thickness of the blade surface and the blade material. The developed numerical model can be considered as a suitable tool for aerodynamically and mechanically design of a turbine blade. The results for a 500 W turbine show that the turbine performance improves by 5% approximately, by modifying chord radial distribution. Yield stress analysis shows the effect of introduced chord distribution on the blade strength, in different blade thicknesses and different blade materials. In addition, optimum tip speed ratio for having favorable mechanical safety factor is derived. Three different airfoil are examined for this investigation and comparing their mechanical safety factor.

Page 1 from 1