Search published articles
Showing 2 results for Internal Resonance
Morteza Homayoun Sadeghi, Saeed Lotfan,
Volume 17, Issue 2 (3-2017)
Abstract
In this paper nonlinear modal interactions and stability of a Rayleigh beam carrying a mass-spring-damper system are investigated. For this purpose, the dimensionless equations governing the vibration of the system are analyzed based on multiple scales method. By considering viscoelastic Kelvin-Voigt damping in the beam, complex mode shapes and time-dependent resonance frequencies are extracted. Using the traditional form of the multiple scales method results in physical contradiction in the time response of the concentrated mass which should be resolved. After free vibration analysis, the forced response of the system under harmonic force with frequency close to the first natural frequency and occurrence of one-to-three internal resonance is studied. The parameters of the one degree of freedom system are considered in a way that the modal interaction occurs via internal resonance mechanism. In this condition, frequency response of the system and its stability are investigated and it is shown that the unstability associated with the jump and Hopf bifurcation occurs in the vibration amplitude. Plots of the time response, phase and Poincare show that periodic, quasi-periodic and chaotic vibration may take place in the system. In order to verify the present paper’s results, the natural frequencies of the system are compared to those of the previous studies; in addition to this comparison, the frequency response based on numerical integration validates the results of the present paper.
M. Rezaee , V. Shaterian_alghalandis,
Volume 19, Issue 9 (9-2019)
Abstract
The equations of nonlinear motion of clamped-hinged beam with an open crack were extracted and through solving them, the internal resonance in the cracked beam was studied. To this end, the crack was modeled as a torsional spring and the cracked beam was considered as two beam segments connected by a torsional spring. The equations of motion of the cracked beam were extracted considering the geometrical nonlinearity. Then, using the Galerkin’s method, these equations were changed to a set of nonlinear differential equations for vibration modes which were solved by the perturbation method. Since the mechanical energy of the beam in each mode depends on the instantaneous amplitude of vibration of the beam at the corresponding mode, so to analyze the influence of the crack on the energy exchange between the modes, the instantaneous amplitudes of the vibration modes were obtained. The results show that in the cracked beam the magnitude of the energy exchanged between the modes is less and the frequency is more than that in the intact beam. Also, by increasing the crack depth the frequency of energy exchange between the modes increases. The Vibration response obtained for the cracked beam with various amounts of the damping ratios shows that the frequency and the amplitude of energy exchange between the modes are independent of the system damping. To validate the results by the perturbation method, the equations of motions are also solved by a numerical method and the obtained results are in agreement with the results of the analytical method.