Search published articles
Showing 2 results for Melting Process
Mehdi Eynbeygui, Javad Shahbazi Karami, Jamal Arghavani,
Volume 17, Issue 4 (6-2017)
Abstract
Additive manufacturing methods and/or 3D printing have become increasingly popular with a particular emphasis on methods used for metallic materials. Selective Laser Melting (SLM) process is one of the additive manufacturing methods for production of metallic parts. The method was developed in particular to process metal parts that need to be more than 99 percent dense. In this method, according to a predefined pattern, the top surface of the powder layer is scanned by the laser and a local (selective) melt pool is produced in the place of the laser spot which results in a fully dense layer after solidification. In this study, a semi-coupled thermo-mechanical simulation of SLM process is carried out in ABAQUS finite element software. In order to simulate the moving heat flux and update material properties from the powder to the dense solid, the ability of the software for employing user-defined subroutines is employed. Investigation of the residual stress distribution and distortion of a part built using SLM process are the main objectives of this simulation. Results which are presented for two different mechanical boundary conditions show that when the bottom face of the layer is clamped, the top face of the built layer deforms in a concave shape, while the lateral faces of the layer have simply-supported boundary conditions and the bottom face of the layer is free, the part is warped.
Babak Kamkari, Mohammad Vahabi,
Volume 17, Issue 11 (1-2018)
Abstract
This paper presents an experimental and numerical investigation of phase change material melting in a rectangular enclosure. The aim of this research is the study of the effect of the tilt angle of the enclosure on the flow structures and the melting rate. In the experimental section, the visualization of the melting process is carried out by the photography of the phase change material through a transparent enclosure. Then, the image processing of the photographs is performed to calculate the instantaneous liquid fractions. The variation of the solid-liquid interface by tilting the enclosure clearly implies the evolution of the flow structures in the liquid phase. Numerical simulation is performed using the enthalpy-porosity approach for tilt angles of 90, 45 and 0o and wall temperatures of 55, 60 and 70 oC. The results show that by decreasing the tilt angle from 90o to 45o and 0o, the melting times are 52% and 37% less than that of the vertical enclosure. Melting time reduction in the inclined enclosure is due to the formation of the vertical flow structures and thermal plums in the liquid phase. By Increasing the Stefan number from 0.36 to 0.43 and 0.55 the thermal energy storage increase by 5.4% and 13.8%, respectively. Also, a correlation is developed to predict the thermal energy storage in the tilt enclosures using nonlinear regression.