Search published articles


Showing 2 results for Multiple Scale Method

Mousa Rezaee, Reza Jahangiri,
Volume 14, Issue 15 (3-2015)
Abstract

In this study, the nonlinear vibration of a sandwich FG plate resting on a nonlinear Pasternak foundation which is simultaneously subjected to transverse harmonic forcing excitation and in-plane static force is investigated. Based on the Modified First-Order Shear Deformation Theory (FSDT), applying the von-Karman nonlinear strain–displacement relation and the Hamilton’s principle, the governing nonlinear coupled partial differential equations are derived. Then, the Galerkin’s procedure is used to reduce the equations of motion to nonlinear ordinary differential equations. In the absence of foundation, the validity of the formulation for analyzing the modified shear correction factors for shear stresses is accomplished by comparing the results with those reported in the literature. By applying the multiple scales method and considering the second order nonlinear approximation of solution, the primary resonance of the system under the transverse forcing excitation is analyzed. Under the steady-state condition, the frequency-response, the force-response and the damping-response equations are derived. Then the conditions of existence and stability of multiple coexisting non-trivial solutions for amplitude of the responses are discussed and the saddle node bifurcation points of the characteristic curves are derived. It is shown that, the variation of the system parameters in the resonance boundary may cause the jump phenomenon. Moreover, the effects of the system parameters including, excitation frequency, foundation parameters, damping, and amplitude of the harmonic and in-plane forces on the system nonlinear dynamics are investigated. Also it is shown that the presence of the foundation has a considerable influence on the resonance characteristic curves.
Mousa Rezaee, Leila Ghorbanpour,
Volume 17, Issue 4 (6-2017)
Abstract

Unbalance in rotating machines causes malfunction of the system operation and it may leads to its failure. Therefore, the sources for imbalance should be investigated, identified, and measured to solve the mentioned challenges. Rotating unbalance appears when the geometric and the inertia axes of the rotor do not coincide, and as a result this causes self- excited vibrations. One of the methods to control and reduce the unbalances is utilizing automatic ball balancer (ABB). In previous studies, the stability and the dynamic behavior of ABB have been mostly investigated by using numerical methods, and the perturbation methods are applied only for stability analysis. Because of the advantages of the analytical methods in studying the dynamics of the systems, in the present study, for the first time the dynamic behavior as well as the stability of a rotor equipped with an ABB is analyzed by the multiple scales method. To this end, nonlinear equations of the systems are derived using the Lagrange’s equations and firstly, the multiple scales method is applied to investigate the stability of system and then the response of the system is achieved considering one and two terms of approximation. The results demonstrate that the stability analysis using the multiple scales method and the first method of Lyapanov lead to the same results. Moreover, the responses obtained by the multiple scales method and the mostly used numerical method, Rung-Kotta technique, are in a good agreement.

Page 1 from 1