Search published articles


Showing 142 results for Nanoparticles


Volume 1, Issue 1 (3-2023)
Abstract

Nowadays, application of enhanced oil recovery methods has increased; therefore it’s necessary to determine their impacts on environment and human life. So, this research investigates the environmental impacts of conventional enhanced oil recovery methods and new methods such as using electromagnetic waves, ultrasound waves, and nanoparticles. The investigations show that electromagnetic waves and ultrasound can effectively remove many environmental pollutants. Characteristics of the wave and the type of formation determine that these waves have different effects on the formation, and efforts should be made to understand these effects to prevent damage to the formation. Nanoparticles can also reduce the quantity of pollutants in the environment. According to the mechanisms of entrapment of nanoparticles in the porous medium, they may remain in the reservoir and find their way to the underground water over time, so their environmental effects should be considered in the long term. A better knowledge of new methods of increasing oil extraction will lead to the identification and use of more suitable methods with less environmental effects (compared to conventional methods).

 


Volume 1, Issue 2 (3-2018)
Abstract

In general, temporary well plugging is essential for repairing of oil and gas wells due to their long life time. One of the newest methods used for this purpose is gel polymer plugging. The strength of the gel in the well conditions is one of the most important challenges in the application of gel polymer in the temporary well plugging in work over operation. In this study, silica nanoparticles were used to improve the strength of polymer hydrogels. The bottle and rheological tests were used to determine the gel strength in desired well conditions (high temperature and high salinity). Also, the gel strength properties and swelling behavior were studied in various conditions such as distilled water, formation water, tap water and oil. It was observed that the strength of the gel increased from 520Pa to about 36kPa (5000% increase) by adding nanoparticles. Also, the gel swelling in the aqueous solution has been significantly reduced. Based on the results obtained in this study, a polymer gel containing 9 wt.% of silica nanoparticles with structural strength and thermal stability at 90 °C was introduced for field studies.

Volume 1, Issue 2 (7-2023)
Abstract

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Uranium (VI) from nuclear waste streams. The uptake behaviour of U(VI) from nitric acid solutions was investigated by batch studies.
Adsorption of uranium (VI) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of uranium (VI) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing uranium (VI) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial uranium (VI) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of U (VI) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of U (VI) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.
 

Volume 2, Issue 1 (6-2018)
Abstract

Aim: Most scientists are trying to treat cancer, and in this regard were produced numerous anticancer drugs, that adverse effects on non-target tissue. To overcome this, drugs freight to magnetic nanoparticles Chitosan and its carboxymethyl secondary coumpands are biopolymers that are non-toxic, biodegradable therefore found applications in biomedical field. We explain here that glycerol monooleate covered magnetic nanoparticles (GMO-MNPs) capable of transporting hydrophobic anticancer drugs. Method: In the present study, we have expanded 5-fluorouracil (5-FU) that loaded on chitosan MNPs for targeted cancer therapy. Results: The modified nano-adsorbent was then characterized by Fourier Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), elemental analysis of CHN (9) and thermal weighing analysis (TGA). Lab conditions such as pH, contact time were optimized. To analyze the structure of the sample, X-ray diffraction spectroscopy was used to investigate the magnetic properties of the nanosized particles synthesized by the magnetometer and to detect the phase type formed on the monolayer glycerol matrix network using a polarizing light microscope. Also, the study showed essential oil release in the external environment of 90% for 30 hours. Conclusion: The optimized magnetic nanoparticles according to SEM image, exhibited segregated nanoparticles with sub-spherical smooth morphology and also the high thermal stability of 5-Fluorouracil nanoparticles which indicated a well-established structure of nanoparticles.

Volume 2, Issue 2 (9-2018)
Abstract

In this research, general performance of Radial basis function (RBF) Artificial neural networks in experimental data on effect of the NiO, WO3, TiO2,ZnO and Fe2O3 nanoparticles in different temperatures and mass fractions on the viscosity of crude oil has been studied. The morphology and stability of the nanoparticles has been analyzed by DLS and TEM analysis, the results showed that the average diameter of the nanoparticles is from 10 to 30 nm which defers for different oxide nanoparticles. The general method for calculating the optimum span of the Isotropic Gaussian function with special algorithm for learning RBF networks, has been presented. This study's results declared that the RBF artificial neural networks, because of having strong academic basis and having the ability to filter the noises, has a good performance. With increase in temperature, the ratio of the viscosity of the nanofluids decreases compering to the viscosity of the basefluid. Also with increase in nanoparticles mass fraction the related viscosity increases boldly. For temperatures higher than 50°C, the related viscosity is less than the viscosity of the basefluid.

Volume 2, Issue 2 (9-2018)
Abstract

In recent years, with the advancement of nanoscience, many scientists have used nano materials to solve existing problems in various sectors of oil industry. Nanofluids made with these materials can facilitate the separation of oil and gas in a reservoir and increase oil recovery factor compared to current methods. Therefore, in this work, the effect of clay nanoparticles on oil recovery factor was investigated. For this purpose, two different base fluids, water and ethanol, were used to disperse the nanoparticles. The effect of adding clay nanoparticles on viscosity changes and interfacial surface tension was determined. Also, in order to investigate the effect of nanoparticle concentration in the base fluid on the ultimate oil recovery factor, nanofluids with 3 and 5 wt% were prepared. Results show that oil recovery factor increases significantly in these conditions by adding them into the base fluid, though nanofluids included clay nanoparticles have less stability. Also, the effect of these nanoparticles dispersed in water is greater than in ethanol. For example, at 5 wt%, oil recovery factor for water based nanofluid was 49.7% and for ethanol based nanofluid was 46%.

Volume 2, Issue 3 (7-2016)
Abstract

Background: This study was performed to determine antifungal activity of silver nanoparticles (nano-Ag) compared to voriconazole on clinical and standard strains of Aspergillus fumigatus.
Materials and Methods: Inhibitory potency of nano-Ag was determined using microtiter broth dilution method. Susceptibility tests were performed against A. fumigatus isolated from BAL (bronchoalveolar lavage) of patients who suffered from respiratory problems and compared with the strain (ATCC: 204305) by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A. In addition, cytotoxicity effect of silver nanoparticles was studied on epithelial cell line by MTT assay.
Results: From 60 BAL samples the following strains were isolated; A. flavus (n=21), A. niger (n=3), and A. fumigatus (n=1). The minimum inhibitory concentration (MIC90) values of nano-Ag were 0.25 and 0.5 μg.mL-1 for standard strain and clinical isolates respectively. The  Minimum Fungicidal Concentration (MFC) values of nano-Ag were 0.5 and 1 μg.mL-1for standard strain and clinical isolates respectively. MIC90 values of voriconazole were 0.125 and 0.25 μg.mL-1 for standard strain and clinical isolate respectively. The MFC values of voriconazole were 0.25 and 0 μg.mL-1 for standard strain and clinical isolates respectively. Silver nanoparticles exhibited low cytotoxicity in 0.25 μg.mL-1 concentration.
Conclusion: Our results showed high antifungal activity of silver nanoparticles against Aspergillus isolates. Furthermore, the availability of a wide form of nano-Ag structures can be considered as novel agents to decrease fungal burden in medical application.

Volume 3, Issue 1 (11-2012)
Abstract

Gold nanoparticles have received considerable attention in recent years because of their promising applications in diagnostic imaging, biosensors, biolabels, and drug and gene delivery systems. The chemical methods of nanoparticle synthesis are the most widely and traditionally used methods. Production of nanoparticles by chemical methods causes contamination from precursor chemicals due to the use of toxic solvents and generation of hazardous by-products. On the other hand, the physical methods have low yield and high cost. Hence, there is an increasing need to develop low cost, non-toxic, biocompatible and environmentally benign processes for synthesis of metallic nanoparticles where the biological approaches for synthesis of nanoparticles gain importance. In this study, we investigated the biosynthesis of gold nanoparticles using Streptomyces sp. ERI-3. Streptomycessp.ERI-3 was isolated from the soil of Ahar Copper Mine (Ahar, Iran) and its biomass was incubated at 28ºC on a rotary shaker (200 rpm) for 48 h. The nanoparticles were characterized by means of UV-vis spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM).The nanoparticles exhibited maximum absorbance at 540 nm (special wavelength of gold nanoparticles) in UV-vis spectroscopy. The XRD spectrum of gold nanoparticles exhibited 2Ө values corresponding to the gold nanocrystals. The TEM micrographs revealed the extracellular and attached to cell surface formation of gold nanoparticles in the size range of 50-100 nm with spherical morphology.  

Volume 3, Issue 1 (5-2019)
Abstract

Research Subject: Removal of industrial wastewater especially from textile and dyeing factories is always important actions to control of pollutions. Using of polymeric adsorbents is an important method for removal of dyes from industrial wastewater. In this research work, designing and fabrication of PVA-based adsorbent with proper potential for removal of green malachite from industrial wastewater has been reported.
Research Approach: For fabrication of adsorbent 4 wt.% PVA was gelled in the present of 10 wt.% glutaraldehyde as cross-linker and punched. The punched hydrogels were porous with freeze drying method. For improving the adsorption ability, graphene and TiO2 were used. The adsorption of green malachite with prepare adsorbent was measured timely to determine the optimum percentage of nanoparticles. In addition, the effect of contact time and the presence of UV on the adsorption of pollution was investigated. Finally, the adsorption isotherms and thermodynamics study were investigated in different time.
Main Results: The results of adsorption of pollution with PVA/graphene adsorbent in different times showed that 0.5 wt.% is the optimum loading of graphene in the PVA matrix. This value was 3 wt.% for TiO2. The adsorption percentage via optimum adsorbent in dark condition showed that one minute after addition of adsorbent the adsorption percent increased to 75% indicating the high capability of the adsorbent in adsorption of tested pollution. The porous structure was confirmed via SEM image. By comparing the correlation coefficient for Langmuir and Freundlich isotherms it was found that Freundlich isotherm has better agreement with the findings of the current study. In other words, adsorption of green malachite with fabricated adsorbent was done multi layered. The thermodynamics studies showed that due to negative value of Gibbs energy the adsorption reaction of green malachite with fabricated absorbent is automatically.

Volume 3, Issue 2 (11-2012)
Abstract

In biological methods, microorganisms such as bacteria, fungi, actinomycets and yeasts are used to produce metal nanoparticles. Fungi are extremely good candidates in the synthesis of silver nanoparticles because of their ability to secrete large amounts of enzymes. The aim of this study was the biosynthesis of silver nanoparticles by Penicillium spp. isolated from the soil of plump and zinc mine in Zanjan city (Iran). After culturing, growth of colonies and isolation of Penicillium spp., 15 g of the fungal biomass was mixed into 1 mM silver solution for 72 h incubation. The production of silver nanoparticles was characterized by UV-vis spectroscopy, X-ray diffraction(XRD) and transmission electron microscopy. Among the sixteen kinds of isolated fungi, six species were recognized as Penicillium of which just the fungus Penicilliumbrevicompactum was found to be able to produce silver nanoparticles. The production of silver nanoparticles was preliminarily approved by observing  the color change of the reaction solution from colorless to yellowish brown. The synthesis of silver nanoparticles was confirmed by observing the characteristic peak at 406-425 nm. The presence of crystalline silver nanoparticles was confirmed by observing peaks in (111), (200), (220), (311) in the XRD  analysis. Transmission electron microscopy images showed that silver nanoparticles were produced in the size range of 50 -100 nm in spherical shape mainly extracellular at the surface of mycelium. The fungus was recognized to be Penicilliumbrevicompactumusing slide culture method, growth on Czapek yeast agar and Keratin-sucrose agar.

Volume 3, Issue 3 (12-2019)
Abstract

Research Subject: Poor mechanical strengths and lack of thermal stabilities of hydrogels confine their extensive practical applications in many areas. The growing scientific need for solving this problem and achievement to the hydrogels with improved properties has led to the design and production of the nanocomposite hydrogels.
Research Approach: The polymeric networks of nanocomposite hydrogels compared to the ordinary hydrogels have improved elasticity and rheological properties. Other points that increase the importance of structural studies of nanocomposite hydrogels are the high strength of these materials versus the application of external forces, as well as maintaining its structure against increasing of temperatures. In this regard, the type and amounts of nanomaterial, the preparation method and formation of hydrogel network have a significant role in improving the physical, chemical and biological properties of hydrogels, and, it must be noted that these parameters will depend on the application of nanocomposite hydrogels. This also highlights the need for the production of nanocomposite tailored hydrogels. Therefore, orientation of the range of nanomaterials, the preparation method and product identification, along with sufficient information on the application of these materials, might have an important role in ensuring the success of these materials, requiring comprehensive library research and studies on polymerization processes, morphology and rheology.
Main Results: In this review article, the scientific advances in the field of nanocomposite hydrogels, focusing on its types based on the type of nanoparticles, its properties, preparation methods, identification methods with a new perspective on rheology, thermal analysis and morphology is investigated. Finally, the applicability of these materials is collected in a comprehensive table in various fields such as tissue engineering, enhanced oil recovery, agriculture, and etc…

Volume 4, Issue 2 (9-2013)
Abstract

Biodegradable polymeric nanoparticles are highly regarded in drug delivery due to bioavailability, better encapsulation, controlled release and low toxicity. Drug encapsulation in polymeric nanoparticles may improve the therapeutic effects of these compounds. Polymers are divided in two types: natural and synthetic. Chitosan, as a natural polymer, can have many applications in drug delivery due to good properies. The purpose of this study is to optimization of the production of chitosan nanoparticles for drug delivery. Chitosan nanoparticles were prepared according to ionic gelation method and characterized. Prepared nanoparticle morphology investigated using SEM and particle size distribution, and surface charge and polydispersity index (PDI) were determined by Nanozeta Sizer. FTIR spectra of the lyophilized samples were recorded and proved the formation of nanoparticles. This study has shown that the particle size and zeta potential can be controlled by a change in the ratio of the weight and volume of chitosan and pH adjustment.

Volume 4, Issue 2 (9-2015)
Abstract

The aim of this study, in the first step, was to recover the protein content in wastewater of fish meal factories using chitosan, chitosan nanoparticles and chitosan-aluminum sulphate composition. In the second step, the extracted protein was assessed for its  essential amino acids profile.  Also, the  reduced amount of proteins in the waste water was evaluated by measuring different parameters such as turbidity, pH, COD. Finally, chitosan nanoparticles characteristics were investigated using atomic force microscopy. Results showed that turbidity, COD and soluble protein significantly decreased upon  adding different concentrations of chitosan, nanoparticle of chitosan and chitosan-alum (p<0.05). The maximum protein recovery was related to chitosan-alum composition and chitosan nanoparticles with no significant difference between these two treatments. Evaluation of recovered protein in term of amino acids profiles showed that there were essential amino acids such as histidine, lysine, methionine and phenylalanine in protein of fish meal wastewater.      

Volume 5, Issue 1 (6-2016)
Abstract

Silver nanoparticles (AgNPs) are widely used in consumer products mainly due to their antimicrobial action. The rapid increase in the use of nanoparticles has driven more attention to their possible ecotoxicological effects. In this study: first, acute effects of colloidal AgNPs during embryonic stage of Persian sturgeon and Starry sturgeon were investigated and then in Starry sturgeon, their short-term effects during early life stages (before active feeding commences) were analyzed. Based on the obtained results from the acute toxicity tests, AgNPs induced a dose-dependent toxicity in both species during early life stages. The short-term toxicity test was performed using 0, 0.025, 0.05 and 0.1 mg/l of colloidal AgNPs. Silver accumulation in larvae exposed to 0.1 mg/l AgNPs was recorded significantly higher than the control treatment (P<0.05). However, the obtained survival rate data did not indicate any significant differences among treatments.

Volume 5, Issue 1 (7-2021)
Abstract

Abstract
Research Subject: Breast cancer is one of the most common cancer in the world with the highest mortality rate in women. Chemotherapy is the typical therapy for the cancer. However, it has side effects due to damage to healthy cells. Targeted drug delivery by nano carriers to the cancerous cells reduces the toxic side effects on normal cells. Serum albumin is a widely used drug carrier because of its availability, ease of preparation, and binding ability to various ligands. Attachment of iron oxide nanoparticles to albumin can control their distribution by applying an external magnetic field.
Research Approach: In this study, albumin nanoparticles attached to superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized and loaded with 5-Fluorouracil (5-FU) anticancer drug by using the desolvation technique. The produced nanoparticles were characterized in terms of size, surface charge, and drug entrapment, by dynamic light scattering (DLS) and UV-Vis spectrophotometry. The cytotoxic effects of 5FU-loaded magnetic albumin nanoparticles and free 5FU on MCF7 cells were evaluated with the MTT assay. The internalization of nanoparticles in MCF-7 cells was confirmed by Prussian blue staining. In the end, the effects of nanoparticles on cell cycle and apoptosis were evaluated by flow cytometry using propidium iodide.
Main Results: The mean particle size and zeta potential of 5FU loaded albumin nanoparticles and albumin magnetic nanoparticles were 220 nm, -25.8 mV, and 221 nm, -28 mV respectively. Drug entrapment efficiency and drug loading efficiency were also, 20%, 1%, and 15.8%, and 0.06% for albumin nanoparticles and magnetic albumin nanoparticles in turn. The drug-loaded magnetic albumin nanoparticles showed higher cytotoxicity than the free drug on MCF-7 cells. The flow cytometry cell cycle analysis showed more cytotoxicity of albumin nanoparticles in comparison with other groups. According to these results, it can be said that 5-FU loaded magnetic albumin nanoparticles were more effective and deserve further studies in the cancer treatment.
Keywords: Albumin magnetic nanoparticles, 5-fluorouracil, targeted drug delivery, MCF-7 cell line

Volume 5, Issue 2 (9-2021)
Abstract

The rise of bacterial infections has become a serious problem in human societies. As a result, the development of nanocomposite materials based on biocompatible and non-hazardous materials, besides having antimicrobial and biocompatibility or non-cytotoxicity, associated with unique structural properties, possesses a great importance. Research approach: In this study, bacterial cellulose (BC)/polypyrrole (PPy) and zinc nanoparticles (ZnO), which simultaneously have antimicrobial properties and cell proliferation, were introduced as a new generation of nanocomposite scaffolds produced by freeze-drying. To begin with, ZnO with different weight percentages of 1%, 3% and 5% was added to BC and then PPy in the amount of 2 mmol was embedded in the structure by in situ polymerization. FESEM images proved that the nanofibrous and porous structure of BC was also preserved in the presence of PPy and ZnO. However, after adding PPy and ZnO, they formed a dense structure and microstructure of grape clusters. By adding 2 mmol PPy into BC and upon in situ synthesizing, the tensile strength and Young modulus of BC were significantly reduced to 71 MPa and 2.5 GPa, respectively. On the other hand, with the addition of ZnO nanoparticles, the mechanical properties significantly increased (both of Young modulus and tensile strength compared to BC/PPy samples) due to the compaction of the nanocomposite aerogel’s structure and the formation of the interface of ZnO nanoparticles with both polymers of BC and PPy. The observation of the inhibition zone in the culture medium containing two gram-positive and negative bacteria, well proved the antibacterial ability of ternary nanocomposite scaffolds. The results of MT9 related to L929 on aerogels showed that by adding 3% of ZnO nanoparticles, adhesion and cell proliferation increased significantly during different days of 1 day, 5 days and 7 days of culture.

Volume 5, Issue 3 (12-2021)
Abstract

Research subject: Solar cells has gained a great attention as a green, renewable and cheap energy resources. To overcome the challenging technical problems and improve their competitiveness with silicone solar cells, the design, synthesis and development of new materials with engineered band gap energies has found an undeniable importance.
Research approach: Herein, the synthesis of a polymer with donor-acceptor structure based on polyaniline grafted to ZnO nanoparticles at one end and naphthalene moiety at the other end of chains, and investigation of their chemical structure, composition, morphology, optical and electrochemical properties is reported. The chemical structure of the materials were analyzed by FT-IR and 1H NMR spectroscopy. The organic and inorganic contents of materials were determined by thermal gravimetric analysis (TGA) and atomic absorption spectroscopy (AAS) techniques. The morphology and size of nanoparticles were observed by scanning electron microscopy (SEM). The optical and electrical band gap energy of the samples were measured by ultraviolet visible-diffuse reflectance (UV-Vis-DRS) spectroscopy and cyclic voltammetry (CV) diagrams.
Main results: The chemical structure of designed materials has been successfully confirmed by the results of FT-IR and 1H NMR spectra. TGA and AAS analysis have indicated that the synthesized final material has contained about 10% of ZnO and 90% of organic parts including toluene-2,4-diisocyanate, 2,4-diaminotoluene, polyaniline and naphthalene groups. An almost highly uniform spherical nanoparticles with sizes about 70 nm has been observed by SEM images. UV-Vis-DRS spectroscopy and CV diagrams have revealed that by grafting ZnO nanoparticles and naphthalene moiety to the polyaniline chain ends, the optical and electrical band gap energy of the sample were lowered to 1.19 and 0.95 eV, respectively. It was concluded that the grafted groups to chain ends has increased the length of conjugated system, lowering the energy level of lowest unoccupied molecular orbital (LUMO) and increasing the energy level of highest occupied molecular orbital (HOMO). Detailed analysis of CV diagrams has indicated that the effect in lowering of LUMO has been a bit more pronounced than the increasing of HOMO energy level.

Volume 5, Issue 3 (12-2021)
Abstract

Research subject: The use of hydroxyapatite nanoparticles (HAp) in traditional polymers as reinforcing agent has been reported. While there are a limited number of reports regarding the effect of HAp morphology on the mechanical properties of the polymeric matrix, no research on this effect on supermolecular polymers has been reported so far. This study investigates the hypothesis that incorporation of unidirectionally grown HAp nanoparticles (rod-like nanoparticles, rHAp) into supramolecular polycaprolactone (SPCL) leads to the synthesis of a new bioactive construct.
Research approach: For this, rHAp nanoparticles were first synthesized by microemulsion method and then functionalized with 2-ureido-4[1H]-pyrimidinone (UPy) groups. Moreover, PCL was functionalized and converted to supramolecular structures by reacting the hydroxyl terminal groups with UPy groups. Finally, SPCL/rHAp nanocomposites were synthesized by solution casting method and their structure and properties were examined using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM), universal testing machine and simulated body fluid (SBF).
Main results: According to the results, microemulsion is an efficient procedure for the synthesis of rod-like nanoparticles with high phase purity. On the other hand, based on the results, it is possible to functionalize these nanoparticles with UPy. Tensile test showed that by incorporation of these modified nanoparticles into SPCL, a significant increase in both elastic modulus and tensile strength can be observed. In fact, while the initial PCL was a waxy solid, modification with UPy and then incorporation of modified nanoparticles made it an elastic material. Finally, the obtained results indicated high bioactivity of supramolecular nanocomposites compared to the sample without filler. Therefore, supramolecular SPCL/rHAp nanocomposites with bioactive properties and dynamic character can be used as a suitable replacement for bone tissue defects.


Volume 6, Issue 1 (10-2015)
Abstract

Nanotechnology involves technological research and development in spaces at the range of 1 to 100 nanometers, and in this technology, very small and atomic scale particles are created and handled. Plant extracts can be used as a green method for the synthesis of silver nanoparticles. In this study, the biosynthesis of silver nanoparticles was performed using extracts of sesame (Sesamum indicum) seeds. Silver nitrate was added to the seed extract, and then it was incubated at 30 ° C. The effects of three concentrations (1mM, 2mM and 3mM) of silver nitrate on the synthesis of silver nanoparticles were studied. The analyses of absorption spectroscopy UV-Visible, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Inductively Coupled Plasma (ICP) were conducted to assess the production of nanoparticles. UV-Visible spectroscopy analysis and the peak at 420 nm indicated the occurrence of nanoparticles in the extract. TEM image determined that the nanoparticles were spherical with average size of about 14 nm. XRD analysis showed the nano-crystals synthesized by the extract, and Inductively coupled Plasma (ICP) determined the conversion percentage of silver ion into silver nanoparticle as approximately 99.61 percent.

Volume 6, Issue 1 (10-2015)
Abstract

Magnetotactic bacteria can be affected by Earth's magnetic field orientation. They have been observed various forms of cocci, bacilli and spirilla. These bacteria make magnetosomes affected by the magnetic field and its orientation as part of the iron is stored. In this study, the presence of magnetotactic bacteria in different parts of Iran with features freshwater pearls saline containing iron mine in Zanjan, Persian Gulf, Mighan and Qom wetlands was investigated. Sediments and water collected were put under magnetic field. Results showed that all types of isolated bacteria were, Gram-negative and shapes to bacillus, spirillum and coccus. The magnetic field in the capillary tube containing a magnetotactic bacterium that responds was observed to magnetic field. Mighan and Qom wetlands and Zanjan's iron mine samples have more cases of magnetotactic bacteria,were studied in particular. Transmission electron microscopy images of iron nanoparticles were visible within it. Results molecular analysis, sequencing and BLAST in NCBI website showed in sample Znjan's iron mine there is Magnetospirillum magnetotacticum strain. Higher concentrations indicate of iron nanoparticles in the sample compared to the Mighan wetland with iron mine, that the abundance of iron ions alone did not increase the level of magnetic nanoparticles of Fe by bacteria.

Page 1 from 8    
First
Previous
1