Search published articles


Showing 2 results for Nonlinear Kinematic Hardening

Amir Ashrafe, Khalili Khalili,
Volume 15, Issue 4 (6-2015)
Abstract

In hydroforming process, the curve of internal pressure versus axial feeding is called loading path which is the key to produce a desire product. Finite element simulation of tube hydroforming can be used to study the loading path effect on the final part characteristics. In this research the finite element simulation of pulsating hydroforming process has been done in conjugation with two different work hardening models: an isotropic hardening and a mixed isotropic-nonlinear kinematic hardening model, which is capable to describe the Bauschinger effect. The parameters of both hardening models have been obtained from tensile test data. The result of the both finite element simulations were compared to experimental work. The results show that the mixed hardening model gets better prediction of final product characteristics than isotropic hardening. The differences between the results of two hardening models are from this fact that in a hydroforming process the tensile and compression loads are used and the loads reversal may be occurred. To study the effect of pulsating pressure on tube material characteristic, a three-step bulge test with unloading has been done and the results have been compared to monotonic bulge test. Loading and unloading of internal pressure cause a higher bulge height for a final pressure level compared to monotonic bulge height. The finite element simulation of pulsating hydroforming has been compared to linear hydroforming. The reported bulge heights and thicknesses show an improvement in formability of tubular material in pulsating hydroforming by considering the average pressure level which was applied.
Elyas Abdollahi, Tajbakhsh Navid Chakherlou,
Volume 16, Issue 12 (2-2017)
Abstract

Accumulation of plastic strain during cyclic loading is one of the main reasons for fatigue failure. In order to predict the fatigue life of plates, it is necessary to calculate the accumulated plastic strain and the affecting parameters carefully. In this study, a combination of nonlinear isotropic and nonlinear kinematic hardening model (modified Choboche) was implemented in the commercial finite element code of ABAQUS, by using a FORTRAN subroutine to calculate the accumulation of strain in samples made from thin plates of aluminum. In this regard experimental, strain controlled and stress controlled cyclic tests were carried out, and the required coefficients for simulating the hardening behavior of aluminum alloy 2024-T3 were obtained and the accumulation of plastic strain was simulated at different uniaxial loading condition. The comparison of the experimental and the predicted results shows that, the determination of optimal coefficients for combined nonlinear isotropic and nonlinear kinematic hardening model (modified Choboche), has an adequate ability to predict the experimental results. The obtained results also show that, increasing stress amplitude and mean stress increase the strain accumulation. The results from 4 types of cyclic loading indicate that the stress ratio has a direct influence on the strain rate when the maximum applied cyclic load is kept the same, and an increase in stress ratio increases the accumulation of plastic strain. Moreover, the rate of strain accumulation at the first cycles is high while it is reduced by increasing the number of cycles.

Page 1 from 1