Search published articles


Showing 3 results for Optimal Path Planning

, , ,
Volume 12, Issue 2 (6-2012)
Abstract

nonholonomic mobile robots are widely used in industrial environments due to their extended workspace. Also, to increase the productivity and efficiency of the mobile robot, their path planning is an important task, and is attracted attention of many of robotic scientists. In this paper, the optimal path planning of the wheeled mobile robots are performed considering their nonlinear dynamic equations and the nonholonomic constraints. Problem of the trajectory optimization is formulated, and conditions of the optimality are derived as a set of nonlinear differential equations by means of indirect method of optimal control method. Then, the optimality equations are solved numerically, and variant simulations are executed. To verify the simulation study, some experimental analysis are done for the Scout mobile robot and compared to the simulation results. The experimental analysis verifies the simulation results, and demonstrates the applicability of the proposed method for the optimal path planning of the mobile robots.
Roya Sabbagh Novin, Mehdi Tale Masouleh, Mojtaba Yazdani, Behzad Danaei,
Volume 15, Issue 8 (10-2015)
Abstract

Regarding the progress in technology and increase in the capabilities of the robots, one of the main challenges in the field of robotics is the problem of real-time and collision-free path planning of robots. This paper focuses on the problem of path planning of a 3-DOF decoupled parallel robot called Tripteron in the presence of obstacles. The proposed algorithm is a synergy-based algorithm of convex optimization, disjunctive programming and model predictive control. This algorithm has many advantages compared to previous methods reported in the literature including not getting stuck in the local optimums and finding the global optimum and high computational speeds. Finally, the algorithm will be implemented on a model of the real robot. It should be mentioned that this algorithm has been implemented using Gurobi optimization package with C++ programming language in Qt Creator environment and the simulation of the parallel mechanism is performed by the CAD2MAT package for MATLAB. Obtained results reveal that the maximum computational time at each step is less that one second which, for this particular application, could be regarded as a real-time algorithm.
Hossein Rezaeifar, Farshid Najafi,
Volume 15, Issue 8 (10-2015)
Abstract

In order to utilize robots for industrial tasks, designing a suitable path is necessary.Executing the path by the robot in the presence of obstacles, makes the path planning task a difficult one. In addition, path planning is a time consuming task and needs expertise to define certain path for each industrial job. In this paper, uses Jerk-minimum method, B-Spline curves, via-point, and obstacle avoidance algorithm to automatically generate a suitable and safe path for a simulated 7 degrees of freedom industrial manipulator.A user determines via-points for robot trajectory using a Kinect sensor,then a combination of Jerk-minimum method, B-Spline curves, a path is generated. This path is checked by an obstacle avoidance algorithm,and a final path is generated. The obstacle avoidance algorithm uses the inverse kinematic equation of the robot to modify the robot trajectory. One of the advantages of the proposed method is both to facilitate trajectory planning for the user and to create a smooth trajectory for the robotic arm.

Page 1 from 1