Showing 3 results for Performance Curve
Mohsen Behnia, Mahdi Nili Ahmadabadi, Mohsen Saghafian,
Volume 13, Issue 14 (3-2014)
Abstract
In this study, the radial flow turbine of a cooling turbine is investigated numerically and then compared with the experimental results at some operation conditions. Performance characteristics of the compressor are obtained experimentally by measurements of rotor speed and flow parameters. In this investigation, the turbine performance curve is obtained and three dimensional flow field in the turbine is analyzed. The rotor and casting geometry are modeled in BLADE GEN and CATIA softwares respectively. The TURBO GRID software is used for grid generation of rotor while the ANSYS MESH software is applied for grid generation of casting. Finally, 3D numerical solution of fluid flow in the turbine is solved by CFX flow solver. In this approach, compressible flow equations are solved according to the pressure based method with SST turbulence model. To ensure the numerical results, the grid independency is studied. Finally, the performance characteristics of the turbine are obtained numerically which are then compared to the experimental results. The comparison shows good agreement between numerical and experimental results.
Reza Niroomand, Mohammad Hassan Saeedi, Siamak Kazemzadeh Hannani,
Volume 15, Issue 2 (4-2015)
Abstract
Nowadays, computer simulations are becoming more and more important in performance investigation of thermal systems. In this article, radiator of cooling system of diesel engine of ER24PC locomotive is simulated. The radiator is composed of parallel and series arrangement of compact heat exchangers with offset strip fins. It also has two high and low temperature sections. Due to the complexity and compactness of heat transfer plates implemented in the radiator, the simulation is carried out in two steps. First, a relation for coolant-side and air-side heat transfer coefficient is correlated using computational fluid dynamics. Due to vortex shedding phenomenon in the staggered fin arrays, governing equations are solved transiently in two-dimensional space. Appropriate timestep for the transient solution is chosen according to time period of vortex shedding from the surface. In the second step, using the developed computational code, the overall thermal performance of the radiator is simulated as a heat exchanger. Consequently, temperature distribution inside the radiator and its thermal performance are studied. Amount of heat released from the radiator in different flow rates and temperatures of fluid flowing out of radiator are among the outputs of the developed code. Finally, thermal performance curve of radiator is obtained.
Seyed Mehdi Mahnama, Mehdi Mahnama,
Volume 16, Issue 11 (1-2017)
Abstract
In this paper, the effect of adding a hydrophobic micro porous layer (MPL) at the cathode side of a PEM fuel cell on the cell performance is investigated. For this purpose, a three dimensional two-phase non-isothermal simulation of cathode side layers of a PEM fuel cell which includes gas channel, gas diffusion layer (GDL), hydrophobic micro porous layer (MPL) and catalyst layer (CL) has been performed. The governing equations of fluid flow in the fuel cell are solved with a multiphase mixture model via developing a code and distribution of velocity, pressure, temperature, species concentration and liquid water saturation at the various layers of the cathode side of fuel cell are obtained. Furthermore, the effect of physical and wetting properties of MPL including thickness, porosity, contact angle and permeability on saturation level and performance of the fuel cell are studied. The results show that by adding an extra micro porous layer between GDL and catalyst layer because of differencing in the wetting properties of the layers, a discontinuity appears in the liquid saturation and species concentration at the contact surface of them. In addition, according to the obtained results, increasing the MPL porosity cause to decreasing liquid water saturation and improving the cell performance. While increasing the MPL thickness decreases the cell performance. In order to validate the results, the performance curves calculated by single and two-phase simulating were compared with experimental results and a good agreement was found between them.