Showing 2 results for Physical Adsorption
Shahram Ajori, Reza Ansari Khalkhali, Mansour Darvizeh,
Volume 16, Issue 1 (3-2016)
Abstract
Using molecular dynamics simulations, the structural properties and vibrational behavior of single- and double-walled carbon nanotubes (CNTs) under physical adsorption (functionalization) of Flavin Mononucleotide (FMN) biomolecule are analyzed and the effects of different boundary conditions, the weight percentage of FMN, radius and number of walls on the natural frequency are investigated. As the functionalized nanotubes mainly operate in aqueous environment, two different simulation environments, i.e. vacuum and aqueous environments, are considered. Considering the structural properties, increasing the weight percentage of FMN biomolecules results in linearly increasing the gyration radius. Also, it is observed that presence of water molecules expands the distribution of FMN molecules wrapped around CNTs compared to that of FMN molecules in vacuum. It is demonstrated that functionalization reduces the frequency of CNTs, depending on their boundary conditions in vacuum which is more considerable for fully clamped (CC) boundary conditions. Performing the simulations in aqueous environments demonstrates that, in the case of clamped-free (CF) boundary conditions, the frequency increases unlike that of CNTs with fully clamped and fully simply supported boundary conditions. The value of frequency shift increases by rising the weight percentage of FMN biomolecule. Moreover, it is observed that the frequency shifts of SWCNTs with bigger radius are more considerable, whereas the sensitivity of frequency shift to the weight percentage of FMN biomolecule reduces and this is more pronounced as the simulation environment is aqueous.
Shahab Eldin Hamrahi, Koorosh Goudarzi, Mahmood Yaghoubi, Mehrorang Ghaedi,
Volume 17, Issue 11 (1-2018)
Abstract
The goal of this research is to design and build a solar adsorption chiller operated by activated carbon / methanol. Continuous refrigeration systems are able to produce cooling continuously. This paper examines the effect of activated carbon particles on the performance of a continuous adsorption chiller device. The source of this chiller is through sunlight and supplied by a parabolic collector that does not need to track sunlight. The system operates with two adsorbent beds that, when one is adsorbed, the other is desorbed. The experiments were carried out in Yasuj during three different days in the month of Bahman for three hot water input to the chiller 38℃, 34℃ and 30℃. The average ambient temperature during the experiment is 18℃. Experimental results shows that for the total energy input, 13MJm-2, the average performance factor of the chiller is when the inlet temperature of the hot water of the chiller is 38℃, 34℃ and 30℃, respectively, of 0.123, 0.103 and 0.10. For Previous temperatures the average specific cooling power of the device was obtained at 88Wkg-1, 65Wkg-1 and 50Wkg-1 respectively.