Search published articles


Showing 2 results for Piezoelectric Material

Farzad Ebrahimi,
Volume 14, Issue 1 (4-2014)
Abstract

Analytical solution for the dynamic stability analysis of functionally graded piezoelectric materials (FGPM) circular plates has been presented based on Love-Kirchhoff hypothesis and the Sander’s non-linear strain-displacement relation. The FGPM plate assumed to be gradded across the thickness. The material properties of the FGPM plate assumed to vary continuously through the thickness of the plate according to a power law distribution of the volume fraction of the constituent materials. The plates are subjected to a radial loading and electric field in the normal direction. Bolotin’s method has been employed to obtain the dynamic instability regions. The effect of plate parameters such as thickness–radius ratios, power index, as well as electric field and state loads on instability behavior of the plate is comprehensively investigated.The functionally graded composite material plays a significant role in changing the unstable regions and the buckling loads.
Sima Sobhanirad, Aref Afsharfard,
Volume 17, Issue 10 (1-2018)
Abstract

In this study, a galloping-based energy harvesting system is designed using a nonlinear energy harvesting sink (NES). In doing so, electromechanical equations of motion for the energy harvesting system are derived and the theoretical results are validated with experimental results. Then, three steps are presented to make system work efficiently. In the first step, several cross-section geometries for the bluff body are investigated and the results are verified by the Harmonic Balance Method. These results indicate that isosceles triangular section can harvest more energy than the other ones. In the second step, effect of changing the electrical load resistance on electromechanical behavior of the system is investigated and it is demonstrated that the maximum energy is harvested for load resistance values of more than 1 MΩ. In the third step, influence of changing the tip mass on the system is studied and it is shown that increasing the tip mass leads to increase the output voltage while the bluff body amplitudes remain constant. Consequently, the system is designed to work with the maximum possible tip mass which is about 35.3 gr. Finally, this system with a bluff body of isosceles triangular section can generate 700 mV using the load resistance value of 10 MΩ in the wind speed of 2.5 m/s. This system with the total mass of less than 500 gr and low-amplitude oscillations is designed to work properly in low wind speeds and presents an efficient application for low-power energy harvesting systems.

Page 1 from 1