Search published articles
Showing 1 results for Piezoelectric Nanostructures
Hamed Kavand, Javad Koohsorkhi, Reza Askari Moghaddam,
Volume 23, Issue 1 (12-2022)
Abstract
The electrical properties of nanostructured piezoelectric materials have attracted the attention of many researchers in the last decade. These features are used in piezoelectric micro-sensors. Mechanical propulsion is usually the result of contact between a piezoelectric surface and a foreign object. In this paper, the effect of mechanical propulsion using an air wave (sound) or vacuum on a silicon diaphragm is investigated. The local stresses created on the diaphragm due to the impact of an air wave have a significant effect on the peak-to-peak voltage of the piezoelectric sensor, which can be measured by measuring changes in this parameter. To investigate this, a micromachined diaphragm of silicon was examined and it was found that fabricating a piezoelectric sensor on a thin and patterned diaphragm could increase the peak-to-peak voltage by about 1.3 times. Detection of these stresses using piezoelectric material layered on the thin and formable diaphragm can act as a piezoelectric microphone or a barometer that the presence of microstructures on the diaphragm will increase their sensitivity.