Search published articles
Showing 2 results for Postbuckling
Sara Karamian, Alireza Shaterzadeh,
Volume 18, Issue 2 (4-2018)
Abstract
Exact and numerical solution of eccentrically stiffened panels in the industry is a major step forward in the design of these structures. This paper presents an analytical approach to investigate the nonlinear stability analysis of eccentrically stiffened thin FG cylindrical panels on elastic foundations subjected to hygro-thermo-mechanical loads. The stiffeners are assumed to be spiral-type. The panel has the initial geometrical imperfection. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to a simple power law distribution. The elastic foundation is considered based on Winkler and Pasternak proposed model. Governing equations are derived basing on the Lekhnitsky smeared stiffeners technique and classical shell theory incorporating Von Karman-Donnell geometrical type nonlinearity. Explicit relations of load–deflection curves for FG cylindrical panels are determined by applying stress function and Galerkin method. The effects of angel of stiffener, different dimensional parameters, volume fraction index, initial geometrical imperfection, the stiffness of elastic foundation and moisture concentration on the postbuckling of FG panel are investigated. Also effects of temperature gradient through the thickness and effects of different boundary conditions are investigated for thermo-mechanical loading. The obtained results are validated by comparing with those in the literature.
Hamed Mahmoud Soltani, Mahsa Kharazi, Hamid Reza Ovesy,
Volume 18, Issue 5 (9-2018)
Abstract
In this study, the buckling and postbuckling behavior of composite laminates with piezoelectric layers subjected to compressive in-plane loading have been investigated. The effects of coupled electro-mechanical field on the postbuckling and bifurcation point in cross-ply and general lay-up sequences have been studied using layerwise theory (LWT). The LWT used in this study for analyzing the piezo-composite laminate is based on the assumptions of the first order shear deformation theory (FSDT). In order to obtain the equilibrium equations, the principle of minimum potential energy has been employed. The obtained nonlinear equilibrium equations have been solved using Newton-Raphson iterative algorithm. Furthermore, the three dimensional finite element analysis has been performed to examine the accuracy of the results obtained using the proposed method. The obtained analytical results are in good agreement with those achieved through the finite element analysis. Obtained results showed that, location of the piezoelectric layers have significant effect on the buckling and postbuckling behavior of the composite plates. Moreover, number of degrees of freedom which is used in proposed method are less than finite element method which, decreased the computational time cost.