Search published articles
Showing 1 results for Pulsed Square Wave
S.m. Hosseini Baghdad Abadi , S. Zirak, M. Rajabi Zargar Abadi ,
Volume 20, Issue 2 (1-2020)
Abstract
In this research, the effect of square wave pulsating air on temperature distribution and film cooling effectiveness of flat plate at different frequencies and blowing ratios is experimentally and numerically investigated. Hot air is injected through the holes at an angle of 25 degrees. Square wave pulsed flow is generated at four frequencies of 2, 10, 50, 100 Hz, and five blowing ratios of 0.5, 1, 1.5, 2.4 and 3. To study the film cooling, Navier-Stokes equations are solved by a Reynolds average method. The SST k-ω model was used for turbulent modeling. The results showed that the film cooling effectiveness decreases with increasing of blowing ratio along with an increase in its rate of changes. The difference of centerline film cooling effectiveness between the numerical and experimental values decreases with increasing distance from the edge of injection hole. In general, pulsating decreases film cooling effectiveness in comparison with steady-state. The lift-off of the local jet increases under pulsation. In the pulsating state, the overall film cooling effectiveness decreases by increasing the blowing ratio at a constant frequency. On the other hand, increasing the frequency increases the overall efficiency of film cooling. The maximum averaged centerline effectiveness was obtained at a frequency of 100 Hz and a blowing ratio of 0.5 and the minimum value was obtained for a frequency of 2 Hz and a blowing ratio of 3. For pulsed flow, the maximum and minimum differences of the averaged centerline film cooling effectiveness between experimental and numerical results were 25.55% and 0.717%, respectively.