Mohammadali Mohammadi, Saeid Niazi, Younes Bakhshan, Jamshid Khorshidi,
Volume 23, Issue 2 (1-2023)
Abstract
The present study examined the pool boiling process in a specific geometry by designing and constructing a laboratory complex. Investigation of pool boiling process, electrical resistance, critical heat flux, heat transfer coefficient, bubble growth and departure, bubble growth frequency, and nucleation site density by applying heat flux to critical heat flux was carried out on a ring wire in deionized water at different temperatures. According to the results, increasing the number of rings and fluid temperature decreased the critical heat flux. In the case of a ring wire with a constant number of rings, a fluid with a constant temperature, and the use of heat flux values less than the critical heat flux, the wire temperature increased, but it decreased in the case of increasing the number of rings, a fluid with a constant temperature and applying critical heat flux values. In a ring wire with a constant number of rings, the heat transfer coefficient was constant by increasing fluid temperature at values of heat flux less than the critical heat flux, but the heat transfer coefficient decreased at critical heat flux values. The diameters of the produced bubbles were enhanced by increasing heat flux and they separated from the rings when combined. At the beginning of the reddening of the ring wire, a critical heat flux occurred, and considering 110% of the time required for the critical heat flux, the images of the state of the ring wire after the critical heat flux are presented.