Search published articles


Showing 4 results for Spd

Mahmoud Shamsborhan, Mahmoud Moradi, Ali Shokuhfar,
Volume 16, Issue 5 (7-2016)
Abstract

The most successful ‘‘top–down’’ approach to produce bulk ultra-fine grained or nanostructured materials involves the use of severe plastic deformation (SPD) processing. The amount of higher effective plastic strain per pass plays a key role on the final microstructure of SPD processed samples. In the present study the numerical experiments of the combination of the equal channel angular pressing (ECAP) and simple shear extrusion (SSE) as a new process entitled “planar twist channel angular extrusion (PTCAE)” was performed based on the Response Surface Methodology (RSM), as a statistical design of experiment approach, in order to investigate the effect of parameters on the response variations, achieving the mathematical equations, predicting the results to impose higher effective plastic strain values. Α and ϕ angles, radius and friction coefficient was imposed as the input parameters while average, minimum and maximum effective strain and maximum load was imposed as the output parameters. Governing regression equations obtained after analysis of the simulation data by Minitab software. Optimum process parameters are: α=450, Φ =450, r=2 mm and µ=0.1. Verification of the optimum results using simulation experiment was done. Good agreement between simulation, experimental and optimization was occurred.
Shapor Nikbakht, Mohammad Eftekhari, Ghader Faraji,
Volume 17, Issue 1 (3-2017)
Abstract

There has been much interest in recent years in improving material properties by grain refinements using severe plastic deformation (SPD). With applying severe plastic deformation to metals, the structure changes and nanostructure produce. In this study, ultra-fine grained pure titanium fabricate by combination of Equal channel angular pressing and Extrusion process in different passes (1, 2, 4 and 6 pass). ECAP and Extrusion processes were carried out at 400°C. Then, mechanical and microstructural properties of UFG pure titanium billets produced b combination process of ECAP and extrusion process were examined and the effect of passes on mechanical and microstructural properties was investigated. The results showed that mechanical properties were improved significantly. Ultimate strength increased up to 941MPa, in the best state, while for initial sample was 505MPa, in other word ultimate stress increased about 86.3%. With this combinational method, ultimate stress increased about 60.8% for 1 pass sample, 78.8% for 2 pass sample, 86.3% for 4 pass sample and 80.8% for 6 pass sample rather than initial state. In higher passes the rate of increase are reduced due to the grains size saturation. Hardness increased from 81.85 Hv to 216.65 Hv; In other words, hardness increased 164% from initial value. Further passes of the process only have a minor effect on increasing of billet hardness. Scanning Electron Microscope also revealed that brittle fracture were takeplaced in all sample with shallow dimples.
Amir Mostafapour, Vahid Mohammadi Nia, Mosayeb Ahmadi,
Volume 17, Issue 2 (3-2017)
Abstract

Accumulative press bonding (APB) process is one of the newest approaches of SPD processes in which the applying of strain in materials lead to the substantial plastic deformation and microscopic changes. In this study, APB method was used to production of Al/Cu composite and AA1100 and pure commercial Copper sheets used as matrix and reinforcement respectively. Microstructure evolutions samples proceeding by APB process were studied by Scan Electron Microscopy (SEM) and Optical Microscopy (OM). Mechanical characteristics were accomplished by conducting standard tensile and microhardness tests. The microscopic analysis indicates that as the number of APB passes increased, the reinforcement phase (Cu) dispersion be improved and result in Cu continues layers discrete in to shorter layers. As well, by increasing the number of APB passes up to 3 the ultimate strength, microhardness and elongation had been increased so that, the ultimate strength is raised to 375Mpa, it about 3.1 and 2.7 times is more than as Al and Cu respectively. Under the 3 cycles of APB, the hardness of Al and Cu were reached to 62 and 152.6 HV respectively which are 1.6 and 2.6 times greater than those of corresponding pure materials. Furthermore, SEM observations demonstrated the failure mode in Al/Cu composite proceeding by APB process is shear ductile rupture.
Mohammad Eftekhari, Ghader Faraji, Omid Shapoorgan, Majid Baniassadi,
Volume 17, Issue 4 (6-2017)
Abstract

Todays, numerous researchers have focused on proposing severe plastic deformation (SPD) methods due to the superior mechanical and physical properties of achieved ultra-fine grain material. In all SPD methods a large strain is implied without any substantial dimensional change of work piece to generate UFG and even nanograin (NG) materials. Equal Channel Angular Pressing (ECAP) is one of the most successful techniques for industrial applications. Using long and thin rod is limited in ECAP process. In the present study, a combined process composed of ECAP and Extrusion processes is used on Titanium of grade 2. Titanium is extensively used in aviation and other industries because of high strength to weight value. Using combined process leads to produce high length and thin nanostructured rod. The main goal of this process is evaluation of the temperature in Extrusion process on nanostructures Titanium rods. At first, Titanium rods were processed to 4 passes by ECAP process at 400°C Then they were processed by Extrusion process in 5 different temperatures included 300, 350, 400, 450 and 500°C. The result showed that the best mechanical properties were achieved for the specimen was extruded at 300°C. Strength and hardness were severely improved. Also, the microstructure was really homogenous and refine. The mechanical properties of titanium grade 2 after combined process were equivalent to titanium grade 5 which is used in medical applications and it is expensive.

Page 1 from 1