Search published articles


Showing 2 results for Semi-Empirical Models

Abbas Afshari, Aliakbar Dehghan, Vali Kalantar, Mohammad Farmani,
Volume 17, Issue 1 (3-2017)
Abstract

Surface pressure fluctuations beneath turbulent boundary layer on a flat plate have complex physical behavior and due to its importance in acoustic noise generation, extensive studies have been devoted to predicting or measuring the surface pressure behavior. In the present study to investigate the surface pressure fluctuations under zero pressure gradient, a flat plate with a chord length of 580 mm has been used. All experiments were carried out in a subsonic wind tunnel and at three free-stream velocities: 10, 15 and 20 m/s. In order to measure unsteady pressure fluctuations, a condenser microphone is used as a pressure transducer. Moreover, various parameters of turbulent boundary layer are measured to provide the input variables of semi-empirical models. A single constant temperature hot-wire anemometer has been used for boundary layer measurement. Surface pressure spectra has been measured at various velocities and their collapse on a single curve by normalizing with different variables of turbulence boundary layer is studied. The results show that the best collapses in low and middle frequencies can be obtained by using mixed variables. However, in high frequency range the pressure spectra collapses when it is normalized by inner layer scales. Finally, after ensuring the accuracy of surface pressure spectra results, the efficiency of semi-empirical models for predicting turbulent boundary layer wall pressure spectra is evaluated. The results show the effectiveness of the Goody’s semi-empirical model for prediction of surface pressure spectra by using turbulent boundary layer parameters.
Sepehr Rasekh, Saeed Karimian Aliabadi, Mohammad Hosseinidoust,
Volume 18, Issue 3 (5-2018)
Abstract

In this paper, the Semi-Empirical and numerical methods that can be used to investigate the effects of dynamic stall are compared with each other, and the capabilities of the methods are studied. The experimental measurements have been used in order to compare the methods. The Semi-Empirical Leishman-Beddoes (L-B), Snel and ONERA methods have been used, and the finite volume method was being used for numerical simulations. The lift coefficient was being calculated by all the methods at various conditions, and the drag coefficient had been computed by the numerical and Leishman-Beddoes methods. The parameters that have been used in order to compare the methods, are the maximum lift coefficient value, the angle of attack of the largest lift coefficient, the error at upstroke phase and the error at down stroke phase. The results show among the semi-empirical models; the L-B method has the highest precision to predict the lift coefficient, and although the numerical method can investigate the flow with more details, but the error percentage at the down stroke phase is higher than expectations. The results from the drag coefficient modeling show that the numerical method can predict this coefficient better than the L-B method. The results also can help other researchers to select the best dynamic stall model in order to investigate the wind-turbine aerodynamics.

Page 1 from 1