Search published articles


Showing 2 results for Sobol Sensitivity Analysis

Mohammad Hossein Aliee, Ramin Roshandel, Akram Avami,
Volume 17, Issue 3 (5-2017)
Abstract

In today’s world, using of biogas is increasing due to its methane content, renewability, and low price. Solid oxide fuel cell is one of the best energy conversion technologies, in order to use biogas and it has a high potential to integrate with the gas turbine. In this paper, solid oxide fuel cell-gas turbine hybrid system, which is fed by biogas is modeled with respect to energy and economic aspects. Maximization of electrical energy efficiency and minimization of total investment cost are objective functions, which are considered to find the optimal design variables of the hybrid system. First, each component of the hybrid system is modeled and validated individually. Then, in order to optimize the hybrid system, multi objective optimization via NSGAII is implemented and optimal values of design parameters of the hybrid system were calculated. Optimal point is obtained using Euclidian non-dimensionalization and LINMAP decision making method in Pareto front. So, optimal design values are 66 percent and 175227.4 $, which are electrical energy efficiency and total investment cost, respectively. In optimal point Levelized unit cost is 6.3 cent per kWh. Finally, in order to determine the effect of design parameters on the objective functions, sensitivity of each design parameters were analyzed using Sobol's sensitivity analysis method. Results show that compressor pressure ratio has the maximum effect on electrical energy efficiency. Furthermore, turbine isentropic efficiency and fuel cell current have the maximum effect on the total investment cost.
A. Pak, H. Yaghooti, V. Tahmasbi,
Volume 20, Issue 5 (5-2020)
Abstract

The use of ultrasonic vibrations to reduce the temperature in bone drilling is one of the most important advanced processes that has attracted the attention of bone surgeons. Therefore, the study of temperature behavior in the ultrasonic-assisted drilling process and the prediction of temperature behavior have an important effect on improving the use of this method in orthopedic surgery. In this research, the influence of process parameters on change in the temperature was studied using response surface methodology and data analysis. Data analysis was carried out to find the effect of process factors such as rotational speed, feed speed, and ultrasonic vibrational amplitude and their interaction on the temperature. Moreover, using the statistical method of Sobol sensitivity, the effect, and sensitivity of each input factor on temperature were studied. The results show that the use of ultrasonic vibrations reduces the temperature, and rotational speed (%48), vibrational amplitude (%33) and feed speed (%19) had the greatest effect on temperature in ultrasonic-assisted bone drilling, respectively. As a result, the use of ultrasonic vibration can reduce the dependency of process temperature on the feed speed, and thus make it possible to perform surgery in a shorter time. The minimum temperature is 37°C at the rotational speed of 500rpm and the feed speed of 20mm/min and the vibration amplitude of 15μm.


Page 1 from 1