Search published articles


Showing 2 results for Solid Particle Erosion

A. Khoddami, B. Mohammadi,
Volume 20, Issue 4 (4-2020)
Abstract

In the present study, solid particle erosion of Ti-6Al-4V alloy under multiple particles impact was investigated using finite element modeling. The erosive behavior of this ductile alloy has been simulated as a micro-scale impact model based on Johnson-Cook plasticity and failure equations. Erosive behavior is usually described by the volumetric erosion rate, which is introduced as the eroded volume ratio of alloy surfaces to the mass of the eroding particles. In this paper, the results of the finite element model were validated by comparing with results of typical erosion models. Then, effective factors on erosive behavior of alloy, such as impacting particles velocity, particles size, particles impact angle, temperature effects, and particles shape will be investigated. Results show that there is an exponential relation between particle velocity and erosion rate. Also, as particle size increases, the erosion rate increases at first and after a specific particle size, erosion rate presents a constant trend. The maximum erosion rate has been recorded at an impact angle of 40 degrees and a temperature of 473 Kelvin (average temperature of the middle stages of the compressor). It is shown that when spherical particles shape changes to the angular shape, the erosion rate increases more than four times.
 

Amirsajjad Khoddami, Mohammadali Nasiri, Bijan Mohammadi,
Volume 22, Issue 8 (8-2022)
Abstract

In the present study, solid particle erosion of Ti-6Al-4V alloy under the impact of spherical alumina particles with a diameter of 85 microns was analyzed using experimental studies and smoothed particle hydrodynamics (SPH) modeling. The erosive behavior of this alloy was simulated as impacts on micro-scale and based on Johnson-Cook constitutive equations. This research focuses on the effect of particle velocity and impact angle on erosion rate as the most critical factors. Additionally, the results of this model are validated by empirical results under-considered conditions. At the end of the article, based on the alloy properties, the velocity of particles, and impact angle, a prediction equation was presented on erosion rate in the studied range of velocity and impact angle. This study indicates a power-law equation between the velocity of particles and the erosion rate, where the power is independent of impact angle. Furthermore, in all the velocity and angle ranges, the maximum erosion rate was associated with the angle of 45o. Therefore, the critical angle in erosion is also independent of the velocity of particles.



Page 1 from 1