Search published articles


Showing 4 results for Sound Pressure Level

Mohsen Mohamadrezaei, Ali Akbar Dehghan, Alireza Movahedi,
Volume 17, Issue 5 (7-2017)
Abstract

In current study turbulent flow around a 3D square cylinder is modeled using large eddy simulation and shear stress k-ω turbulence modeling for three values of Reynolds numbers 5000, 46000 and 69000. The flow and sound field simulations are conducted by using fluent commercial software. Sound pressure level in the acoustical far field and on the surface of the square cylinder at incidence are evaluated for six angles of attack. Flow induced sound at far field is predicted by employing FWH analogy while sound pressure level over the surface model is directly estimated by measuring the unsteady surface pressures. The results of the present study showed good agreement with the available experimental results. The fluctuating lift and drag forces acting on the square rod and flow turbulence are the main sources of the acoustic field generation. It is noticed that the minimum of drag coefficient, mean and root mean squared (rms) value of lift coefficient, and sound pressure level in acoustical far field occurred at 13 angle of attack. The maximum Strouhal number occurred at 13o angle of attack. The Strouhal number for all angles of attack is noticed to be independent of the flow Reynolds number. Both turbulence models considered in this study predict the acoustic and flow features within an acceptable accuracy.
Arezoo Najafian, Hamid Parhizkar, Sajjad Ghasemlooy, Abbas Tarabi,
Volume 18, Issue 3 (5-2018)
Abstract

In the present study, the numerical solution of the Ansys Fluent software has been used to calculate the sound produced by the high-speed flow on a cylinder using the Lighthill acoustic analogy. The calculations were carried out on a cylinder (part of the landing gear) at a speed of 70 m/s (take-off and landing speeds of airliners). The problem is initially caried out as a regular unsteady numerical solution. During the solution, aerodynamic noise data sources are stored as inputs of acoustic analyzes in files. Then, by solving the acoustic equations, the volume of produced sound (in decibel) is calculated at points that are pre-defined as the microphone in the desired coordinates. The purpose of this study is to study the ability of Fluent solution to calculate the sound generated by the flow, in addition of using a method for estimating the amount of sound increase by increasing the length of the cylinder. In the other words, due to the timing of the numerical solution, one can calculate sound generated by small length cylinder, and then, using engineering approximation, it estimates the sound of the flow around the larger-length cylinder. After the necessary calculations, results are provided as sound pressure level curves using the acoustic analogy and fourier spectral analysis. The results show that large eddy simulation turbulence model is most appropriate model for acoustic simulations. Also, the approximate method for evaluating the effect of increasing the length of the cylinder is in good agreement with the experimental results.
M. Ramezanizadeh , S. Faramarzi ,
Volume 19, Issue 4 (4-2019)
Abstract

The sound emission of airplanes has some applications such as localization, classification, and detecting fault. Therefore, investigation of issues, which affects the airplanes sounds, is important. In recent years, pollution of dust in all cities of the Iran shows an increasing trend. In the literature, all variables affecting the sound emission such as temperature, pressure, and relative humidity have been investigated, but there are not any researches about the influence of dust on the atmospheric attenuation coefficient. The experimental tests have been carried out with 3 sensitive microphones, 950m away from the takeoff area of Imam Khomeini international airport for 6 different airplanes, including Airbus 320, 319, 321, Boeing 747, 777, and Embraer 190 at different atmospheric conditions. The air temperature was in the range of 20-40˚C and the relative humidity was in the range of 2-34%. At first, the experimental setup was validated by available data, considering different temperatures and relative humidities. In this research, a new variable, β, has been introduced to detect the dust effect, which is defined as: the difference between the calculated sound pressure level at no dust and the measured sound pressure level while the dust density is 1μgr/m3. Airbus 320 has the minimum dust atmospheric attenuation coefficient value (0.01202db*m3/μgr) and its maximum is related to the Embraer 190 (0.0154db*m3/μgr). Finally, the obtained results show that increasing in dust concentration (PM2.5 and PM10) leads to increase in atmospheric attenuation coefficient between airplane and microphones area, and the measured sound pressure level decreases.

H.r. Talesh Bahrami, H. Parhizkar, S. Ghasemlooy,
Volume 19, Issue 5 (5-2019)
Abstract

one of the key issues in the design of high-speed modern devices such as giant aircraft and high-speed trains. In this regard, it is to design these devices in such a way to have at least aerodynamic noise. The cylinder, as a bluff body, is widely used in the design of various devices, such as a landing gear. Therefore, the reduction of cylinder noise can be widely used. In the present study, numerical solution is used to present a method for reducing the noise generated by flow on the cylinder. This is done by flow suction from the grooves the cylinder. Acoustic numerical calculations were performed, using LightHill's acoustic analog approach in the form of wave equations of Ffowcs-Williams & Hawkings model. The numerical solution is performed in the three-dimensional unsteady form, using the large eddy simulation turbulence model. The characteristics of the grooves, such as their dimensions and distance the generated acoustic noise have been studied. The results show that the active control method presented in this paper is an effective and yet simple way to control noise. The cylinder used in the present study produces a noise of about 110 dB at a speed of 250 km/h. According to the results, it can be said that by optimally arranging the number of slots and creating a proper flow suction, its sound level can be reduced to about 60 dB.


Page 1 from 1